next up previous
Next: Abstract Jordan Chevalley decomposition Up: generalities in finite dimensional Previous: Semi direct products of

Levi decomposition

DEFINITION 5.58   Let $ L$ be a Lie algebra over a field $ k$ . Let $ R$ be the radical of $ L$ . A Levi-subalgebra of $ L$ is a subalgebra $ L_1$ of $ L$ such that $ L$ is a direct sum of $ L_1$ and $ R$ as a vector space over $ k$ .

We have the following obvious lemma.

LEMMA 5.59   Let $ L$ be a Lie algebra over a field $ k$ . Let $ R$ be the radical of $ L$ . Let $ L_1$ be a Levi-subalgebra of $ L$ . Then:
  1. $ L \cong L_1 \ltimes R$ .
  2. $ L_1\cong L/R$ .
In particular the isomorphism class of $ L_1$ is unique.

$ \qedsymbol$

LEMMA 5.60   Let $ n$ be a positive integer. Let $ L$ be an $ n$ -dimensional Lie algebra over a field $ k$ of characteristic $ p\in \operatorname{Ccs}(n^2)$ . Assume
  1. The radical $ R$ of $ L$ is abelian.
  2. The center of $ L$ is trivial.
  3. $ p>n^2$ or $ p=0$ .

Then:

  1. $\displaystyle V=\operatorname{Hom}_{k\operatorname{-linear}}(L,R)
$

    admits an action $ \alpha$ of $ L$ . Namely,

    $\displaystyle (\alpha(x).\varphi)(y)
=[x,\varphi(y)]-\varphi([x,y])\qquad (x\in L, y\in L).
$

  2. $\displaystyle V_1=\{\varphi\in \operatorname{Hom}_{k\operatorname{-linear}}(L,R);
\varphi\vert _R\in k\cdot\operatorname{id}_R
\}
$

    is an $ L$ -submodule of $ V$ .
  3. $\displaystyle V_0=\{\varphi\in \operatorname{Hom}_{k\operatorname{-linear}}(L,R);
\varphi\vert _R=0
\}
$

    is an $ L$ -submodule of $ V_1$ .
  4. $\displaystyle U=\operatorname{ad}_L(R)
$

    is an $ L$ -submodule of $ V_0$ .
  5. $ R.V_1 \subset U$ .
  6. There exists $ \chi\in \operatorname{Hom}_{k\operatorname{-linear}}(L,R)$ such that

    $\displaystyle \chi\vert _R=\operatorname{id}_R, \qquad L.\chi \subset U
$

    holds.
  7. For any $ x\in L$ , there exists a unique element $ r_x\in R$ such that

    $\displaystyle x.\chi=\operatorname{ad}r_x
$

    holds.
  8. $\displaystyle h:L\ni x \mapsto -r_x \in R
$

    is a $ k$ -linear projection.
  9. $ L_1=\operatorname{Ker}(h)$ is a Levi subalgebra of $ L$ .

PROOF.. (1):follows from the general theory.

(2),(3),(4):follows easily from the definition of $ \alpha$ .

(5): For any $ r\in R$ and for any $ \varphi\in V_1$ , we have

$\displaystyle r.\phi=(z\mapsto [r,[\phi(z)]-\phi([r,z]))=(z\mapsto 0-c_\phi [r,z])
=\operatorname{ad}_L (-c_\phi r) \in U.
$

(6): $ V_1/U $ is an $ L/R$ -module which has $ V_0/U$ as a submodule of codimension $ 1$ . Thus by using Lemma 5.51 (Weyl's theorem on irreducibility (codimension $ 1$ case)), we see that there exists a 1-dimensional $ L/R$ -submodule $ X/U$ of $ V_1/U $ (where $ X$ is a $ L$ submodule of $ L$ ) such that

$\displaystyle V_1/U=V_0/U\oplus X/U
$

holds. Since $ X/U$ is $ 1$ dimensional, the action of the semisimple Lie algebra $ L/R$ on $ X/U$ is trivial. Thus we see that there exists an element $ \chi\in \operatorname{Hom}_{k\operatorname{-linear}}(L,R)$ such that

$\displaystyle \chi\vert _R=\operatorname{id}_R, \qquad L.\chi \subset U
$

holds.

(7): Since $ x.\chi$ belongs to $ R$ , we know the existence of $ r_x$ . The uniqueness of the $ r_x$ follows from the assumption that the center of $ L$ is trivial.

(8),(9): easy.

$ \qedsymbol$

LEMMA 5.61   Let $ n$ be a positive integer. Let $ L$ be an $ n$ -dimensional Lie algebra over a field $ k$ of characteristic $ p\in \operatorname{Ccs}(n^2)$ . Assume
  1. The radical $ R$ of $ L$ is abelian.
  2. $ p>n^2$ or $ p=0$ .
Then $ L$ has a Levi subalgebra.

PROOF.. Let $ Z$ be the center of $ L$ . Applying the previous lemma to $ L/Z$ , We see that there exists an Levi subalgebra $ L_0/Z$ of $ L/Z$ . Now

$\displaystyle 0 \to Z \to L_0 \to L_0/Z \to 0
$

is a short exact sequence of $ L_0/Z$ -module, and so it therefore splits. (Theorem 5.53 (Weyl's theorem of irreducibility.)) Thus $ L_0$ has a subalgebra $ L_1$ which is stable under action of $ L_0/Z$ . That means, $ L_1$ is a Levi subalgebra of $ L_0$ . So $ L_1$ is also a Levi subalgebra of $ L$ . $ \qedsymbol$

THEOREM 5.62 (Levi decomposition of a Lie algebra)   Let $ n$ be a positive integer. Let $ p \in \operatorname{Ccs}(n^2).$ Let $ L$ be a $ n$ -dimensional Lie algebra over a field of characteristic $ p$ . Then $ L$ has a Levi subalgebra $ L_1$ . In other words, $ L$ may be expressed as a semi direct product

$\displaystyle L=L_1 \ltimes R
$

where $ L_1$ is a semisimple (Levi) subalgebra of $ L$ , and $ R$ is a solvable (radical) ideal of $ L$ .

PROOF.. If $ R=0$ , then we only need to set $ L_1=L$ . So let us assume $ R\neq 0$ . Let us put

$\displaystyle R_1=[R,R].
$

Then from the definition, we $ R/R_1$ is an abelian Lie algebra. It is also easy to verify that $ R_1$ is an ideal of $ L$ . ($ R_1$ is a characteristic ideal of $ R$ ). We apply the preceding lemma for $ R/R_1 \subset L/R_1 $ to obtain a Levi subalgebra $ M/R_1$ of $ L/R_1$ . Then $ M$ satisfies the following relations.

$\displaystyle M + R=L,\quad M \cap R= R_1.
$

Since $ R$ is solvable (and we have assumed $ R\neq 0$ ), we see that $ \dim(M)$ is strictly smaller than $ \dim(L)$ . By induction $ M$ have a Levi subalgebra $ M_1$ . Then it is clear that $ M_1$ is a Levi subalgebra of $ L$ .

$ \qedsymbol$

ARRAY(0x9360948)


next up previous
Next: Abstract Jordan Chevalley decomposition Up: generalities in finite dimensional Previous: Semi direct products of
2009-03-06