next up previous
Next: Ihara zeta function Up: Zeta function of graphs. Previous: Zeta function of graphs.

Zeta functions of directed graphs

DEFINITION 12.1   A directed graph (digraph) is a pair $ X^o=(V^o,E^o)$ of:

By definition, each element $ e$ of $ E^o$ is a pair $ e=(s,t)$ of elements of $ V^o$ . let us call $ s$ (resp. $ t$ ) the source (resp. the target) of $ e$ .

Let $ X^o=(V^o,E^o)$ be a directed graph. For each positive integer $ m$ , we let $ N_m$ to be the number of admissible closed paths in $ X^o$ . Then we put

$\displaystyle Z^o_{X^o} (T)=
\exp\left(
\sum \frac{1}{m} N_m T^m
\right)
$

We define Perron Frobeinus operator $ L_{X^o}:C(V^o)\to C(V^o)$ to be

$\displaystyle L_{X^o}(f)(x)=\sum_{\substack{e \in E^o\\ \operatorname{source}(e)=x}}
f(\operatorname{target}(e))
=\sum_{(x,y)\in E^o} f(y)
.
$

PROPOSITION 12.2  

$\displaystyle Z^o_{X^o}(T)
= \frac{1}{\det(1-T\cdot L_{X^o})}
$

EXERCISE 12.1   Let $ (M,\varphi)$ be a dinamical system of a finite set $ M$ . Is it possible to define a directed graph $ X=(M,E)$ such that its zeta function $ Z_X$ coincides with the zeta function of the dinamical system $ (M,\varphi)$ ? (Compare the Perron Frobenius matrix $ L_{X}$ with `the pull back matrix' $ P_\varphi$ .)


next up previous
Next: Ihara zeta function Up: Zeta function of graphs. Previous: Zeta function of graphs.
2015-07-22