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1 Introduction

In this note, we will calculate the ith sectional Euler number e;(X, L) and the ith sectional Betti
number b;(X, L) of some special polarized manifolds (X, L). We also note that results in this
note are useful for classifications of polarized manifolds (for example see [5]). At any time, we will
update this note if we complete calculations of sectional Euler numbers and sectiona Betti numbers
of new example'.

2 Preliminaties

Notation 2.1 Let (X, L) be a polarized manifold of dimension n. For every integers ¢ and j with
0<i<nand0<j <1, we put

J

Ci(X, L) Z (””l 1>cj_l(X)Ll,

=

Definition 2.1 ([3]) Let (X, L) be a polarized manifold of dimension n, and let ¢ and j be integers
with 0 < j < i < n.

(i) The i-th sectional Euler number e;(X, L) of (X, L) is defined by the following:

ei(X, L) := CiX,L)L"".

(ii) The i-th sectional Betti number b;(X, L) of (X, L) is defined by the following;:
eo(X, L) if i =0,

bilX L) =4 (L Zz 1)/R(X,C) | if1<i<n.

7=0
Remark 2.1 (i) For every integers 4 and j with 0 < j <i <mn, ¢;(X, L), b;(X, L) and w] I(X,L)
are integer (see [3]).

(ii) If ¢ = 0, then eo(X,L) = bo(X,L) = L™. If i = n, then e,(X,L) = e(X) and b,(X,L) =
h(X,C).

1If you find a mistake in this note, please let me know.



3 Calculations

Example 3.1 The case where (X, L) is (P", Opn(1)).

Then .
e;(P", Opn(l)) =e(P")=i+1
and .
n i 1, if ¢ is even,
b:(P", O (1)) = b(F) :{ 0, ifiis odd.
Example 3.2 The case where (X, L) is (Q", Ogn(1)).
Then
N if n is even,
on(Q") = { 0, if n is odd,
n )0, if n is even,
bn-1(Q") = { 1, if n is odd,
b (Q) = 1, if 7 is even with i <n — 2,
’ 10, if ¢ is odd with ¢ < n — 2,
Hence ;
n i i+ 2, if ¢ is even,
ei(@ 7OQ"(1)) = ei(@ ) = { i1 if 7 is odd
and

bi(Q", 0 (1)) = (~1) (a(@”,o@n(l)) - Qibﬂ@”)) -{5
§=0

Example 3.3 The case where (X, L) is (P4, Ops(2)).

if 4 is even,

if 7 is odd.

Set H = Opa(1). Then ¢;(P*) = 5H, co(P*) = 10H?, c3(P*) = 10H3, ¢y(P*) = 5H* = 5.

Hence

eo(P, O0ps(2)) =

€1 (P4, Oﬂm (2))

|
P,ﬂ
[
—
=
<

62(P470P4(2)) =

1=0
3
l
es(P*, Ops(2)) = Z(—l)l l) e (X)(2H) =4,
1=0
ea(P) = e(P =5
On the other hand, since
A B if 7 is even,
bi(P) = { 0, if 4 is odd,
we have
bO(IP47 OHM (2)) = 167
by (]P)47 O]P’4 (2)) = 10,
ba(P*, Opa(2)) = 6,
b3(P47 Ops (2)) = ’
by(P*, O0ps(2)) = 1.



Example 3.4 The case where (X, L) is (Q3, Ogs(2)).
Set H = Oga(1). Then ¢;(Q?) = 3H, c2(Q%) = 10H?, c5(Q%) = 2H? = 4.
Hence

e0(Q%,0g3(2)) = (2H)? =16,

(@, 0p(2)) = Y (1)

e2(Q%, 0gs(2))

I
Fj
|
[t
~—

~

e3(Q%, 0g3(2)) = e(Q’) =

On the other hand, since

@ ={ 0 e
we have
bo(Q%,0gs(2)) = 16,
b1(Q%, 0gs(2)) = 10,
b2(Q%, 0gs(2)) = 6,
b3(Q%, Ogs (2)) 0.

Example 3.5 The case where (X, L) is (P, Ops(3)).
Set H = Ops(1). Then ¢ (P?) = 4H, ¢5(P?) = 6H?, c3(P?) = 4H5.
Hence

eo(P3, 0ps(3)) = (3H)® =21,

a®.0:3) = Y0 (1 anopm =15,

=0 !
e2(P%, 0ps(3)) = Y (=)' s (X)(3H)' T =9,
es(P?,0ps(3)) = e(P?) =4.

On the other hand, since
if 4 is even,

1
. 3\ _ )
b:(F7) = { 0, ifiisodd,

we have
bO (P3a O[PB (3)) = 167
bi(P?,0ps(3)) = 10,
bo(P3, Ops(3)) = 6,
b3 (]P)Sa O[PS (3)) -

Example 3.6 The case where (X,L) is a Veronese fibration over a smooth curve C (see [2,
(13.10)]).

Then there exists a vector bundle £ of rank three on C such that X = P(€) and L = 2H(E) +
f*(B), where f: X — C is its fibration and B € Pic(C). Set e := deg & and b := deg B. First we



calculate e; (X, L). Here we note that 2g(C)—2+e+2b = 0, L? = 8e+12b and g1 (X, L) = 1+2e+2b.

Then
eo(X,L) = L3 =8¢+ 12b,e1(X,L) = 2 — 2¢: (X, L) = —4e — 4b.

Next we calculate es(X, L). Since

eX) = Y > (f _ Z) eu(f (EVNHEY *e;_1(f*(Te))
j=0 k=0
= 3y (f*(Te)H(E) + 3H(E) + 21 (f*(EY) H(E),
we have
2
) = YU () ancoen + )

Next we calculate e3(X, L).

we have eg(X,L) =e(X) =6 —
Furthermore we calculate b;

Example 3.7 The case where
Here we note that by [2, (8.11)

(3.7.1) (X,L) = (P3, 0p:(2)).

=0
20e + 270.

We note that e3(X, L) = e(X). Since

bo(X) = 1,

hi(X) = 29(C),

bo(X) = 2,

b3(X) = 29(C),
6g9(C) = 3e + 6.
(X,L). Then
bo(X,L) = S8e+ 12e,
bi(X,L) = 2(1+2e+2b),
by(X,L) = 19e+ 25b,
by(X,L) = 2—e—2b.

(X, L) is a Del Pezzo manifold with n = dim X > 3.
Theorem], we have L™ < 8 and (X, L) is one of the following:

First we calculate e;(X, L). Since

ei(X, L)

S (T T eneon
=0

%

>

(—1)! (n —1 —li— l— 1) <n —|—Z1> gn—itl,
i—

we have

s - (e

o = () (e o))

i = (e Q) e
o = (e o O (e



Next we calculate b;(X, L). Since

o -{ o HIVE
we have
bO(X»L) = eO(XvL):&
bi(X,L) = —e(X,L)+2b(X)=2,
bo(X,L) = ea(X,L)—2(bo(X) — b (X)) = 2,
b3(X,L) —63(X,L)+2(b0(X)—bl(X)+b2(X)):0

(3.7.2) X is the blowing up of P? at a point and L = 7*(Ops(2)) — E, where 7 : X — P3 is its
birational morphism and F is the exceptional divisor. Then by [3, Theorem 3.2] and (3.7.1)
above, we have

eo(X,L) = T,
el(Xa L) = 0,
BQ(X, L) = 5,
63(X7 L) = 6.
and
bo(X,L) = 7,
bl(X7 L) = 27
bo(X,L) = 3,
b3(X,L) = 0.

(3.7.3) (X, L) is either
(P! x P! x PY @ pfOpi (1)), (P? x P, @7_1p; Op2(1)) or (Ppz(Tp2), H(Tp2))
where p; is the ith projection and Tp2 is the tangent bundle of P2.

(3.7.3.1) The case where (X, L) = (P! x P! x P!, ®3_;p:Opi(1)).
Since Tx = ®3_,p;(Tp1), we have

3
a(Tx) = Y _pja(Tm)
=1

3
= Zp}fq(oz@l(?)),
eo(Tx) = preu(Te)pacr(Te) + preu(Zen)psen(Ter) + paca(Tp)pzen (Te)
= P1c1(Or(2))p2¢1(Op1 (2)) + pre1(Op (2))p3e1(Opi (2)) + poci (O (2))p31(Opi (2))
C3(X) = e(X)

On the other hand
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Therefore

G:
=
>
=

I
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2

ea(X,L) = (-1) ﬁ) co (X)L =6,
1=0
e3(X, L) = e(X) =38,
and
bo(X,L) = eo(X,L)=6,
bi(X,L) = —ei1(X,L)+2b(X)=2,
ba(X,L) = ea(X, L) —2(bo(X) — b1(X)) =4,
b3(X,L) = —e3(X,L)+2(bo(X)—b1(X)+b(X)) =0.
(3.7.3.2) The case where (X, L) = (P? x P2, @2, p;Opz(1)).

Since Tx = ®5_,p;(Tp2), we have

2
a(Tx) = > pja(Te)
j=1

2
= ) pjca(0p(3)),
j=1
c2(Tx) = pica(Tp2) + prei(Tee)pyer(Tez) + paca(Tp2)
= 3piOp2(1)* + 9pj Op2 (1)p3Op2 (1) + 3p3Op2 (1),
c3(Tx) = pica(Tp2)psei(Tpz) + piei(Tp2 )psca(Tp2)
= 9p;Op2(1)*p3Op2(1) 4 9p} Op2 (1)p3Op2 (1),
(X)) = e(X).
On the other hand
bo(X) = 1,
h(X) = 2¢(X)=0,
bo(X) = 2b5(P?)bo(P?) + by (P?)by (P?) = 2,
b3(X) = 2b3(P?)bo(P?) + 205 (P?)by (P?) = 0,
by(X) 204 (P?)bo (P?) + 2b3(P?)by (P?) + by (P?)by(P?) = 3.
Therefore
eo(X,L) = L*=6,
x.0) = St X)L =0
axn = S0 (P o=
X,L) = 3 —1)! L+ X)Lt =¢
) = S (] ecort e
5 l
es(X,L) = ;uy(l)cs_l(X)LHlﬁ,
ea(X, L) = e(X)=09,



and

bo(X,L) = eo(X,L)=6,

hi(X,L) = —e1(X,L)+2b(X) =2,

bo(X,L) = ea(X,L)—2(bo(X) — b1 (X)) =4,

b3(X,L) = —e3(X,L)+2(bp(X)—b1(X)+by(X)) =0,
ba(X,L) = es(X,L) = 2(bo(X) — b1 (X) + b2(X) — b3(X)) = 3.

(3.7.3.3) The case where (X, L) = (Pp2(Tp2), H(Tp2)).
First we note that

S— N N
1
o N o

Then by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)] we have

eo(X, L) s2(Tp2) = Kg» — c2(P?) =
er(X,L) = —(ci(Zp2) + Kp2)c1(Tp 2)
62(X7L) = CQ(]P )+CQ(7EP>2) 6,
e3(X,L) = 2¢(P?) =

and
bO(Xv L) eO(Xa L) =6,
bi(X,L) = (c1(Tp2) + Kp2)er(Tp2) +2 =2,
bo(X,L) = ba(X)+c2(P?) —1=4,
b3(X,L) = bs(X)=0.

(3.7.4) The case where (X, L) is a linear section of the Grassmann variety Gr(5,2) parametrizing
lines in P, embedded in P? via the Pliicker embedding. Then 3 < n < 6 and L™ = 5.

Remark 3.1 Here we review the Chern class of Gr(p, q) parametrizing P4=1 in PP~1 (see [7,
Chapter 14, 14.7]).

(i) Let S (resp. Q) be the universal subbundle (resp. the universal quotient bundle) of
Gr(p, q). Then

c(Gr(p,q)) = c(S¥ ® Q). (1)
We note that rankS = ¢ and rank@ = p — ¢. From (1),
Ch(TGI'(p,q)) = ch(SY)ch(Q) (2)

holds. Since ch(Q) + ch(S) = p, we have

ch(S) = a3 chi(Q).

k>1

On the other hand
ch(SY) =q =Y (~1)Fchi(Q). (3)

k>1



(ii) Let Ag € A1 € ... C A,—1 C PP~ ! be a flag of subspaces with a; = dim 4;, and let
QAo,...,Ag—1) ={L € Gr(p,q) | dim(LNA4;) >4,0<i<qg—1}.

Then Q(Ao, ..., A4—1) is a subvariety of dimension Zf:_ol (a; — 1), which is called a Schubert
variety. Then we set (ag,...,aq-1) = [Q(Ao, ..., A¢-1)].
(iii) Next we explain the Schubert caliculas. For A = (Ao, ..., Ag—1) withp—g>Xo > ... >
Ag—1 = 0, we set

{Xo, - g1} = det(en,+5-i(@))o<ij<q-1-
Then ¢,,,(Q) = {m,0,...,0}. We note that the following equality holds.

(A} em(@) =D {u}, (4)
where the sum over p with p —q > pig > Ao > -+ > pg—1 > Ag—1 and Z:'I:_ol AN = —m+
I i
Moreover we have

fo @@ ey = [ @ an o ap) (5)
Gr(p,q) Gr(p,q9)
k!
- .. IH(CLJ*‘“)'
ap: Ag—1- i<j

Here a; =p—q+i—X\;, k = Z?;Ol ai—% = dim Gr(p, ¢) — g;& Ai = q(p—q)—zg;ol i

Now we consider the case where X = Gr(5,2). Then first we calculate ¢;(Gr(5,2)) for
1 <7 <5. From (2) and (3), we have

ch(Gr(5,2)) = ch(SY)ch(Q)

- (2 - Z(—l)kchk(Q)) (3 +) Chk(Q)) :

k>1 k>1

Using this, we get the following. (Here we note that ¢;(Q) = 0 for j > 4 because rank@ = 3.)

c1(Gr(5,2)) = 5¢1(Q)

0(Gr(5,2) = 126(Q) — 2(Q)

c3(Gr(5,2)) = 20c1(Q)* — 10¢1(Q)ea(Q) + 5e3(Q)

ca(Gr(5,2)) = 28¢1(Q)* —38¢1(Q)*c2(Q) + 20¢1 (Q)e3(Q) + Tea (Q)?

c5(Gr(5,2)) = 36¢1(Q)° — 90¢1(Q)*ca(Q) + 40c1(Q)?e3(Q) + 45¢1 (Q)c2(Q)? — 10¢2(Q)c3(Q).

Next we use the Schubert caliculas. First from (5) we get the following.

C1 (Q)G = 57
a(@’e(Q) = 3,
a(@)’e(Q) = 1.

Next we calculate ca(Q)%c1(Q)?. Since {2,0} - {2,0} = {3,1} + {2,2}, we have

[y @@ = [ a@u+ [, a@ies

_ 2 2
= Jon @O+ /Gm 1 (QR(1,2)

= 2.



Next we calculate c2(Q)c3(Q)er1(Q).

|, e@a@a@ -
Gr(5,2)
= 1
Hence
c1(Gr(5,2))L° 5¢1(Q)% = 25
e2(Gr(5,2))L* = 12¢1(Q)° — c1(Q)*e2(Q) = 57
3(Gr(5,2))L° = 20c1(Q)° — 10c1(Q)*e2(Q) + 5er (@) es(
ca(Gr(5,2))L% = 28¢1(Q)° — 38c1(Q)*e2(Q) + 20¢1(Q)’cs
cs(Gr(5,2)L = 36¢1(Q)° — 901 (Q)*ca(Q) + 40¢1(Q)3c3
+45¢1(Q)%c2(Q)* — 10¢1(Q)2(Q)e3(Q) = 30
Therefore
eo(X, L) L° =5,
e1(X,L) = c(X)L° -5L° =0,
e2(X,L) = co(X)L* —4ey(X)LP +10L° =7,
e3(X,L) = e3(X)L? —3co(X)L* 4 6¢1(X)L° — 10L° = 4,
ea(X,L) = ca(X)L? = 2c3(X) L3 + 3co(X)L* — 4ey (X)L +5L° = 6,
es(X,L) = c5(X)L — ca(X)L* 4 c3(X)L3 — co(X)L* + 1 (X)L° — L° =8,
e¢(X, L) e(X) =10

Next we calculate b;(X,L).

Since bo(X) = bQ(X) = 1, b4(X) = b6(X) = bg(X)
b1o(X) = b12(X) =1 and b;(X) = 0 for every positive odd integer j, we have

bo(X,L) = 5,
h(X,L) = 2,
bz(XaL) = 5,
bs(X,L) = 0,
by(X,L) = 2
bs(X,L) = 4,
bs(X,L) = 2.
eo(X,L) = 5,
el(X,L) = 0,
eo(X,L) = T,
es(X,L) = 4,
ea(X,L) = 6 ifn=4,5
es(X,L) = 8 ifn=
bo(X,L) = 5,

Since {2,0} - {3,0} = {3,2}, we have

/Gl"(5,2) a(Q)13.2} = Gr(5,2) ¢1(Q)(0,2)

=2



bh(X,L) = 2

bQ(X’ L) = 9

bs(X,L) = 0,

ba(X, L) 2 if n = 4,5,
bs(X,L) = 4 ifn=>5.

(3.7.5) The case where (X, L) is a complete intersection of two hyperquadrics in P"*2. Then L™ = 4.
First we calculate e(X) in this case. In general we can prove the following.

Lemma 3.1 Let (X, L) be a complete intersection of two hypersurfaces of degree s and t in

P*t2. Then
s n+3n71 s\ k s n—1 s j2+j i n+3 -
(0=~ (5) w2 (7) X (w3l s) s

Proof. Let ¢; :=c¢j(X) and H := Ox(1). Then the following holds (see [7, Example 3.2.12]).
(1+ H)"™ =C(X)(1 +sH)(1 +tH).
Here C(X)=(14c¢1+ -+ ¢y,). Hence

3
(Cn+ 8Cn_1H) +t(cy 1 H + scp_oH?) = (n + )H”
n
(cn1 + scp—oH) + t(ch—oH + scn,gHQ) = (n + ?) H !
n—
3
(ca + sciH) +t(c1H + scoH?) = <n42r )H2

Hence

¢y +scp 1 H + (—t)"_2 . t(clH"_1 + scoH™)

()oY ) e (o

Moreover since c; H" 1 = O(n—s—t+3)H"" !, we have c; H" ! + scoH" = (n —t + 3)H™.
Therefore

Cp + sCp_1H

(

(

( _

(-0 1= (203) - o (21))
(

+3 n+3
1) 3 1" 2 .
( ) * (n+2 n+1

10



By the same argument as above for every j with 1 < 7 < n — 1 we have

CaniJ + SCj_lHnijJrl

s " mE n+3
:(_t)n—j+2<(1—t) R (—t)’“<n+3_k)>~

k=0
Hence
n—1 n—1 . 2+7
s s\k s s\J n+3
Syt (7) S <7) _pk _g)n () 6
=== (1) S () 0t 1) s )
k=0 §=0 k=0
O
Lemma 3.2 Let (X, L) be a complete intersection of two hyperquadrics in P2, Then
| 2n+4, if n is even,
e(X) = { 0, if n is odd.
Proof. By Lemma 3.1 we have
n n+2-—j
1 n+3
— (=9 n-+2 - 1" -9 k
=2 g nnr e Y 23R
j=1 k=0
Next we prove the following.
Claim 3.1
n nt+2—j
1 n+3
__o\n+2 - —1)" —92 k 7
R SRS DD WL SN @
j=1 k=0
|0, n is odd,
] 2n+4, n is even.

Proof. First we note the following.

S5, ®)

0
-3 ni_j(?)’“(niﬁk% (—2)”*21‘("*.2)

n
0 j=1 J
1

1 k=
n—1n+l—j n
n+2 n+2
_ _9\k _o\k
, ( )< >+ ( )<n+2—k>+.
k=0 j=

H
T
)
SN~—
3
+
[\v]
d,
VR
3
<+
[N
~

11



Then from (8) and (9) we have

j=1 k=0
n—1n+l—j 1 n
n+2 n+2 n+2
CEE (1) () B ()
ol n+2—=k = n+2—=k = Ji
n—1n+1—j
2
- ( )k<ni;_k>+4n+6+( 1)n 2 — (—2)n+2 (10)
j=1 k=0

Here we prove (7) by induction on n.
If n =1 and 2, then (7) holds.

Next we assume that (7) holds for n — 1 is odd. Then by assumption we have the following
equality.

n—1n+l—j
(—2)" ! +% (n—DD)" >0 Y (—2)’€< nt2 ) = 0. (11)

= = n+2—k

Then by using (11), we have
1 n n+3
-9 n+2 - -1 n —9 k
SRR SIS DD DU SS

=(=2)"7+ 5

j=1 k=0 n+2-
n—1n+l—j
1 2
_ (_2)7l+2 4 5 n— (_Q)k( Z;— k) + 4dn =+ 6 + 1— (_2)n+2
n _

= (=22 4+ % (5n+7+2(=2)""(n—1)(-1)"")
=2n +4.

12



Next we assume that (7) holds for n — 1 is even. Then by assumption we have the following
equality.

n

ey 1 1ntl— ] "4
(2" 5 | (= D=)" ht2 ok = 42 (12
j=1 k=0

Then by using (12), we have

nn-‘rQJ
( 2)n+2+ n+ ( n+3 >
= = n+3—k

1 n—1n+l—j n+2
= (=2)""? + 5| Z <n ta_ k) +4n +6 4 (—1)"T2 — (—2)" 2

j=1 k=0
n—1n+l—j
+2
o TL+2 3 5 _ n _ 2 n+2
(~2) (n+ DI M50 -
1
=(-2)""? + > (3n+5+2(=2)"" + (n —1)(-1)"" ' —2(2n +2) — (—2)""?)
=0.
This completes the proof of Claim 3.1. O
From Claim 3.1 we get Lemma 3.2. O

Remark 3.2 Let (X, L) be a complete intersection of two hypersurfaces of degree s and ¢
in P"*2. Then from (6) we can write e(X) as follows.

n n—k
e(X) = (—1)"st (Z(l)k (” Z 3) (Z s”kjtj> ) .
k=0 j=0

Proof.
e =m0 (102 () (e o (D) o (08D
() (1) (1)
T (;)"*1 (1 (=) (213 T (_t)nﬂ(n—;s))} (e ()
(_t>3<n:3) T (_t)n+3) (1 T (i)“)

[

|
Tl @
—

(B0 Sz e
- _t% ((_t)3 (n:i%) bt (—t)”+3) _ ‘%j ((—t)4 (Z—Hl))) Foeet (—t)”+3>
(e () e o) = (e (M) + o)

13



=1 = =
+ +§jl<s>“< (50 j’)+;< i (1F)
(B (3 Fer (B ()
— st jé(—t)j (2% jz_::(—s)(—t)j (152 ) j_io(_s)”(‘“j ("+3)
= st é( " k(““’) Z kg
= (=1)"st i( n+3 an,k,jtj
k=0
So we get the assertion. =

Here we go back to the case (3.7.5). In this case, there exists a smooth ladder X D X1 D
D Xy—1 of L such that (X, L;) is complete intersection of two hyperquadrics in P72,
Since e;(X, L) = e(X,,—i), we see that

] 2044, if ¢ is even with ¢ > 2,
ei(X’L)_{ 0, if i is odd with i > 3.

We also note that ;
4,  ifi=0,
ei(X’L)_{ 0, ifi=1

Next we calculate b;(X, L). Since

0 ={ § i e ST
we have ~.
bi(X,L) = { 2”4_;12% —itd, il even withi>2,
0+255 =i+1, if ¢ is odd with ¢ > 3.
‘We also note that \ -
e

(3.7.6) The case where X is a hypercubic in P! and L = Ox(1).

Here we consider more general case than this. In general we can prove the following claim.
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Lemma 3.3 Let (X, L) be a polarized manifold of dimension n such that X is a hypersurface
of degree m and L = Ox(1). Then

e(X,L) = —(1-m)"*"?—1+m(i+2)),

m
bi(X,L) = (L =m)™2 =1+ m(i+2)) — i, if i is even with i <n —1,
BB = SR m) 2 14 m(i+2) +i+ 1, ifiis odd with i <n— 1.

Proof. First we calculate e, (X, L). Let ¢; := ¢;(X) and H := Ox(1). Then the following
holds (see [7, Example 3.2.12]).

14+ H)""2 =0 4c1+-+cp) (1 +mH).

Hence
2
Cp+mep_1H = (n—l— )H"
n
2
Ch—1+mcp_oH = (n—i— >H”_1
n—1
2
ci+mH = <n—1|— >H
So we have

o = (—m)"H"+ % ((_m)z (n —21— 2) + (m)? (n —;)— 2) F o (—m)nT <Z i i)) n

= e+ o (@ m -1 (U7 - )

= —(1-m)"*? -1 2)).
—((1=m) +m(n +2))
On the other hand, in this case, there exists a smooth ladder X D Xy D --- D X,,_1 of L
such that (X;, L;) is a hypersurface of degree m in P"~7*!. Since €;(X,L) = e(X,_;), by
the above argument we see that

(X, L)=—(1-m)"—1+m(i+2).

=

Next we calculate b;(X, L). Since

1, if ¢ is even with i <n — 1,
bi(X) = { 0, ifiisodd withi<n—1,

we have
bi(X.L) — L((@=-m)y*2—1+m(i+2))—2-4%, if i is even with i <n —1,
A B —L(1=m)y"2—1+m(i+2)+2-%+,  ifiisodd withi<n-—1.
B L@ =m)™? —1+m(i+2) —1, if 4 is even with i <n —1,
- —L(@-m)y"?2—1+m(i+2)+i+1, ifiisoddwithi<n-—1.
This completes the proof of Lemma 3.3. O
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(3.7.7) The case where X is a double covering of P™ branched along a smooth hypersurface of degree
4, and L is the pull-back of Opn(1). Here we consider more general case than this.

Lemma 3.4 Let X be a double covering of P™ branched along a smooth hypersurface of
degree m with even m > 4, and L is the pull-back of Opn(1). Then

1 )
el(X7L) = Z.+2_E(m—1—|—(1—m)l+l)’
) _ ; 1 i+1 it1 ) @ if i is even,
bi(X,L) = (2+2—m(m—1+(1—m) )>+(—1) i1 if i is odd.

Proof. First we calculate e, (X, L). Let B be the branch locus. Then
e(X) = 2e(P") — e(B).
Hence by Lemma 3.3

en(X, L) = e(X)
= 2¢(P") —e(B)
= 2n+2—%((1—m)"+1—|—m(n—|—1)—1)
1

= 2— —(m—14(1—m)"t).
2= —(m =14 (1 —m)")

Next we consider e;(X, L). First we note that A(X, L) = 1 in this case. Since Bs|L| = (),
there exists a smooth ladder X D X; D --- D X,,_1 of L. Then we see that A(X;,L;) =1
and L?ij =2, where L; := L|x, because g(X,L) =m/2—-1>1=A(X,L) and L" =2 =
2A(X,L). Hence X; is a double covering of P"~J branched along a smooth hypersurface
of degree 4, and L; is the pull-back of Opn-;(1). Since e;(X, L) = e(X,—;), by the above
argument we see that for every integer ¢ with ¢ > 1, we have

ei(X,L) = i+2—%(m—1+(1—m)i+l). (13)

Here we note that eg(X,L) = L" =2 =0+2— (34 (=3)°"!). Hence (13) also holds for

i=0.
Next we calculate b;(X, L). By the Barth-type theorem (see e.g. [8, Theorem 7.1.15]), we
have ;
1, if ¢ is even with i <n — 1,
b”(X)_{ 0, ifiisodd withi<n-—1.
Hence we have
bi(X,L) = (1) |e(X,L) =2 (~1)7b;(X)
j=0
, 1 ; ; i=ltl if i is even
— _1\¢ . o _ _ +1 _ 1) . T2 9
(=1) <’+2 pm i+ d-m ) 2(=1) {1—21+1 if 7 is odd,
1 ; ; i if 7 is even
_ . = _ _ 1+1 _1)\i+1 )
= (“2 pm =14 (1 =m) ))+( 1) {¢+1 if i is odd.
We get the assertion of Lemma 3.4. O
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(3.7.8) The case where (X, L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3,2,1,...,1). Then L™ =1 and Bs|L| = {p} (see [1, (16.7) Theorem and Appendix 1]).

In this case, there exists a smooth ladder X D X7 D --- D X,,_1 of L such that (X, L;) is
a weighted hypersurface of degree 6 in the weighted projective space P(3,2,1,...,1). Since
e;(X,L) = e(X,—;), in order to calculate e;(X, L) for ¢ > 1, it suffices to calculate e(X).

Let 7 : X* — X be the blowing up at p € X. Then 7*(L) — E is base point free and let
f: X* — P! be the morphism defined by |7*(L)— E|. In this case, there exists a projective
bundle p : V — P"~! and a double covering p : X* — V such that f = po p. Here we note
that V' = Ppn-1(Opn-1(2) ® Opn-1). Let Hy be the tautological line bundle of V and let B
be the branch locus of p. Then there exist By € |Hy — 27*Opn-1(1)| and B € |3Hy | such
that By 2 P! and B = By + By. Here we note that the following equality holds.

e(X) = e(X*)—e(F)+1, (14)
e(X*) = 2¢e(V)—e(B), (15)
e(B) = e(B1)+e(Bs). (16)

Therefore in order to calculate e(X), we need the value of e(E), e(B1), e(Bs), and e(V).

First we note that
e(E)=eP" Y =n (17)

and
e(By) = e(P" 1) = n. (18)

Next we calculate e(V'). By [1, Proof of Lemma in Appendix 2], we see that there exist the
following three exact sequence:

0— 2HV - 27T*O]Pm—1(1) — TV — 7Epn—1 |V — O, (19)
0— Oy — H' (P, Opn1(1))Y @ 7*(Opn-1(1)) — Tpn-1|y — 0, (20)
O—>T32 —>TleQ — (3HV)|Bz — 0. (21)
From (19), we have
o(Ty) = c(2Hy — 20 Opn-1(1))c(Tpn-1 v ). (22)
Hence
Cn(V) = (2HV — 27T*Opn71(1))cn,1('zfpn71|v)

= (2Hy — 210*Opn-1(1))(n(7* Opn—1(1))"1).

By (20), we get

c((7*Opn-1(1))®") = ¢(Oy ) e(7* Tpn-1). (23)
Hence
et (07 Tnr) = (nf 1)w*opn1<1)>“.
Therefore
cn(V) = (2Hy — 27" Opn—1 (1)) (n(7* Opn-1(1))" 1) (24)
= 2nHy7r* Opn1(1))"!
= 2n.
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Next we calculate e(Bs). Before this, we note the following. Let £ := Opn-1(2) ® Opn-1 and
let H(E) be the tautological line bundle of Ppr-1(E). Then V = Ppn-1(€) and H(E) = Hy .
In this case, since ¢;(€) = 0 for any j > 2, we have s;(€) = Opn-1(2)7. Therefore

Hm* Opn1 (1) = Opn1 (1)" 551 (E) = 277, (25)

From (21), we have
o(T|p,) = c(Tp,)c(3Hv |B,). (26)

From (26) we obtain the following:

Cn-1(B2) + ¢n—2(B2)(3Hv|B,) = cn-1(V)Bs
cn—2(B2) + ¢n—3(B2)(3Hv|B,) = cn-2(V)B2
Cl(Bg) +3Hv|32 = Cl(V)BQ
Therefore
Cn_l(Bg) = 3(Cn_1(V)HV + (—3)Cn_2(V)H‘2/
o (=3)" 2 (V)H T - (=3) T H). (27)

On the other hand, by (22) we have

(V) = (2Hy =277 Opa-r(1))cj-1(Tpr—1|v) + ¢ (Tpr—r|v)

2<j " 1) Hym* Opnr (1)71 + ((?) - 2<j " 1)) T Opn (1)7.

Hence by using (25) we get

c;(VYH" I 2<j " 1) HY T % Opaa (1)1 + ((?) - 2(j " 1)) H 7 Opai (1))
= () ((0)-2(0)
j—1 J Jj—1
S () ()
Jj—1 J
Therefore
n—1

=1 i=1 i=1 i=1
1 n
= A+ (=6)" = (=6)n—1)
1 n
= 18((—5) +6n — 1),



and

Since H{ = 2"~1 from (27) we get

Cnfl(Bg) (29)
=3 %((_S)R +6n—1)+ é((—G)” —(=5)"+1)+ (—3)"—12"-1>
1 n o on+1
From (18) and (29), we have
(B) = e(By) +e(By) =20+~ (30)
By (24) and (30) we get
e(X*) =2e(V) —e(B) = 2n+ (= ); -1 (31)
Therefore by (17) and (31)
e(X) = e(X*) — e(E) +1=n+ (’5); 2 (32)
So we see that .
(X, L) =i+ (’5)% (33)

for every integer ¢ with 1 < i < n. Here we note that this equality holds for the case where
i=0.
Next we calculate b;(X, L). Since we see from [1, (16.6) 4)] that

bi(X) = 1, if j is even with 7 <n —1,
/ 10, if jis odd with j <n —1,

we have

bi(X, L)

Il
—
|
—_
N,
=
/_
[
S
=
~
SN~—
|
[N}
-
]!
-
—
|
—_
N
<
S
o
—
>

- (=5 +2 ; L if ¢ is even,
= ( 1) <’L + 3 )~ 2(71) ) 1 1, if ¢ is odd,
B (—1)° (=542 if  is even,

yi=hr=t if 7 is odd.
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Example 3.8 The case where (X, L) is a hyperquadric fibration over a smooth curve C. Let
f X — C be its morphism. We put £ := f.(L). Then £ is a locally free sheaf of rank n + 1
on C. Let m: Pc(€) — C be the projection. Then there exists an embedding ¢ : X — P (€)
such that f =m0, X € |2H(E) + n*(B)] for some B € Pic(C) and L = H(E)|x. Let e := deg€
and b := deg B. Then by [6, Theorem 3.1], we see that the following holds. Let (X,L) be a
hyperquadric fibration over a smooth curve C' with dim X = n > 3, and let 7 be an integer with
0 <i<n. Then

_ IRPRY: . 20+ 1)(1 —g(C)) ifiisodd,

ei(X, L) = (=1)"(2e + (i 4+ 1)b) + { 2i(1 —g(C)) if ¢ is even.

Example 3.9 The case where (X, L) is a scroll over a smooth curve C.

Then by [4, Corollary 3.1 (3.1.1) and Corollary 3.3 (3.3.1)], we see that the following holds. Let &
be an ample vector bundle of rank n on C such that X = Po(€) and L = H(E).

| [ i(2-2g(0)) ifi>1,
ei(X, L) { deg & ifi=0

[ R(X,C) ifi>1,
bi(X, L) = { deg & if i = 0.

Example 3.10 The case where (X, L) is a scroll over a smooth surface S.
Let € be an ample vector bundle of rank n — 1 on S such that X = Pg(€) and L = H(E). Then
by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)], we see that the following holds.

(i — Dea(S) iti>3,
: _ ] @)+l if i =2,
ei(X, L) = —(c1 () + Kg)er (E) ifi=1,
52(€) if i = 0.
2 _ . -
X, )= PEO+eE) -1 ifi=2,

cr(E)(er (€) + Ks)+2 ifi=1,
) iti=0
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