Calculations of sectional Euler numbers and sectional Betti numbers of special polarized manifolds

YOSHIAKI FUKUMA

Version 6 November 29, 2012

1 Introduction

In this note, we will calculate the *i*th sectional Euler number $e_i(X, L)$ and the *i*th sectional Betti number $b_i(X, L)$ of some special polarized manifolds (X, L). We also note that results in this note are useful for classifications of polarized manifolds (for example see [5]). At any time, we will update this note if we complete calculations of sectional Euler numbers and sectional Betti numbers of new example¹.

2 Preliminaties

Notation 2.1 Let (X, L) be a polarized manifold of dimension n. For every integers i and j with $0 \le i \le n$ and $0 \le j \le i$, we put

$$C_j^i(X,L) := \sum_{l=0}^j (-1)^l \binom{n-i+l-1}{l} c_{j-l}(X) L^l,$$

Definition 2.1 ([3]) Let (X, L) be a polarized manifold of dimension n, and let i and j be integers with $0 \le j \le i \le n$.

(i) The *i-th sectional Euler number* $e_i(X, L)$ of (X, L) is defined by the following:

$$e_i(X, L) := C_i^i(X, L)L^{n-i}.$$

(ii) The *i-th sectional Betti number* $b_i(X, L)$ of (X, L) is defined by the following:

$$b_i(X,L) := \left\{ \begin{array}{ll} e_0(X,L) & \text{if } i = 0, \\ (-1)^i \left(e_i(X,L) - \sum_{j=0}^{i-1} 2(-1)^j h^j(X,\mathbb{C}) \right) & \text{if } 1 \le i \le n. \end{array} \right.$$

Remark 2.1 (i) For every integers i and j with $0 \le j \le i \le n$, $e_i(X, L)$, $b_i(X, L)$ and $w_i^j(X, L)$ are integer (see [3]).

(ii) If i = 0, then $e_0(X, L) = b_0(X, L) = L^n$. If i = n, then $e_n(X, L) = e(X)$ and $b_n(X, L) = h^n(X, \mathbb{C})$.

¹If you find a mistake in this note, please let me know.

3 **Calculations**

Example 3.1 The case where (X, L) is $(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$.

$$e_i(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)) = e(\mathbb{P}^i) = i+1$$

and

$$b_i(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)) = b(\mathbb{P}^i) = \begin{cases} 1, & \text{if } i \text{ is even,} \\ 0, & \text{if } i \text{ is odd.} \end{cases}$$

Example 3.2 The case where (X, L) is $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1))$.

Then

$$b_n(\mathbb{Q}^n) = \begin{cases} 2, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd,} \end{cases}$$
$$b_{n-1}(\mathbb{Q}^n) = \begin{cases} 0, & \text{if } n \text{ is even,} \\ 1, & \text{if } n \text{ is odd,} \end{cases}$$

$$b_i(\mathbb{Q}^n) = \begin{cases} 1, & \text{if } i \text{ is even with } i \leq n-2, \\ 0, & \text{if } i \text{ is odd with } i \leq n-2, \end{cases}$$

Hence

$$e_i(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)) = e_i(\mathbb{Q}^i) = \begin{cases} i+2, & \text{if } i \text{ is even,} \\ i+1, & \text{if } i \text{ is odd,} \end{cases}$$

and

$$b_i(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)) = (-1)^i \left(e_i(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}^n}(1)) - 2 \sum_{j=0}^{i-1} b_j(\mathbb{Q}^n) \right) = \begin{cases} 2, & \text{if } i \text{ is even,} \\ 0, & \text{if } i \text{ is odd.} \end{cases}$$

Example 3.3 The case where (X, L) is $(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2))$. Set $H = \mathcal{O}_{\mathbb{P}^4}(1)$. Then $c_1(\mathbb{P}^4) = 5H$, $c_2(\mathbb{P}^4) = 10H^2$, $c_3(\mathbb{P}^4) = 10H^3$, $c_4(\mathbb{P}^4) = 5H^4 = 5$. Hence

$$\begin{split} e_0(\mathbb{P}^4,\mathcal{O}_{\mathbb{P}^4}(2)) &= (2H)^4 = 16, \\ e_1(\mathbb{P}^4,\mathcal{O}_{\mathbb{P}^4}(2)) &= \sum_{l=0}^1 (-1)^l \binom{2+l}{l} c_{1-l}(X) (2H)^{3+l} = -8, \\ e_2(\mathbb{P}^4,\mathcal{O}_{\mathbb{P}^4}(2)) &= \sum_{l=0}^2 (-1)^l \binom{1+l}{l} c_{2-l}(X) (2H)^{2+l} = 8, \\ e_3(\mathbb{P}^4,\mathcal{O}_{\mathbb{P}^4}(2)) &= \sum_{l=0}^3 (-1)^l \binom{l}{l} c_{3-l}(X) (2H)^{1+l} = 4, \\ e_4(\mathbb{P}^4) &= e(\mathbb{P}^4) = 5. \end{split}$$

On the other hand, since

$$b_i(\mathbb{P}^4) = \begin{cases} 1, & \text{if } i \text{ is even,} \\ 0, & \text{if } i \text{ is odd,} \end{cases}$$

we have

$$\begin{array}{lll} b_0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) & = & 16, \\ b_1(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) & = & 10, \\ b_2(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) & = & 6, \\ b_3(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) & = & 0, \\ b_4(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) & = & 1. \end{array}$$

Example 3.4 The case where (X, L) is $(\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2))$. Set $H = \mathcal{O}_{\mathbb{Q}^3}(1)$. Then $c_1(\mathbb{Q}^3) = 3H$, $c_2(\mathbb{Q}^3) = 10H^2$, $c_3(\mathbb{Q}^3) = 2H^3 = 4$. Hence

$$e_{0}(\mathbb{Q}^{3}, \mathcal{O}_{\mathbb{Q}^{3}}(2)) = (2H)^{3} = 16,$$

$$e_{1}(\mathbb{Q}^{3}, \mathcal{O}_{\mathbb{Q}^{3}}(2)) = \sum_{l=0}^{1} (-1)^{l} \binom{1+l}{l} c_{1-l}(X) (2H)^{2+l} = -8,$$

$$e_{2}(\mathbb{Q}^{3}, \mathcal{O}_{\mathbb{Q}^{3}}(2)) = \sum_{l=0}^{2} (-1)^{l} \binom{l}{l} c_{2-l}(X) (2H)^{1+l} = 8,$$

$$e_{3}(\mathbb{Q}^{3}, \mathcal{O}_{\mathbb{Q}^{3}}(2)) = e(\mathbb{Q}^{3}) = 4.$$

On the other hand, since

$$b_i(\mathbb{Q}^3) = \begin{cases} 1, & \text{if } i \text{ is even,} \\ 0, & \text{if } i \text{ is odd,} \end{cases}$$

we have

$$b_0(\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2)) = 16,$$

$$b_1(\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2)) = 10,$$

$$b_2(\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2)) = 6,$$

$$b_3(\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(2)) = 0.$$

Example 3.5 The case where (X, L) is $(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(3))$. Set $H = \mathcal{O}_{\mathbb{P}^3}(1)$. Then $c_1(\mathbb{P}^3) = 4H$, $c_2(\mathbb{P}^3) = 6H^2$, $c_3(\mathbb{P}^3) = 4H^3$. Hence

$$e_{0}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = (3H)^{3} = 27,$$

$$e_{1}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = \sum_{l=0}^{1} (-1)^{l} {1+l \choose l} c_{1-l}(X) (3H)^{2+l} = -18,$$

$$e_{2}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = \sum_{l=0}^{2} (-1)^{l} c_{2-l}(X) (3H)^{1+l} = 9,$$

$$e_{3}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = e(\mathbb{P}^{3}) = 4.$$

On the other hand, since

$$b_i(\mathbb{P}^3) = \begin{cases} 1, & \text{if } i \text{ is even,} \\ 0, & \text{if } i \text{ is odd,} \end{cases}$$

we have

$$b_{0}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = 16,$$

$$b_{1}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = 10,$$

$$b_{2}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = 6,$$

$$b_{3}(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)) = 0.$$

Example 3.6 The case where (X, L) is a Veronese fibration over a smooth curve C (see [2, (13.10)]).

Then there exists a vector bundle \mathcal{E} of rank three on C such that $X = \mathbb{P}_C(\mathcal{E})$ and $L = 2H(\mathcal{E}) + f^*(B)$, where $f: X \to C$ is its fibration and $B \in \text{Pic}(C)$. Set $e := \deg \mathcal{E}$ and $b := \deg B$. First we

calculate $e_i(X, L)$. Here we note that 2g(C)-2+e+2b=0, $L^3=8e+12b$ and $g_1(X, L)=1+2e+2b$. Then

$$e_0(X, L) = L^3 = 8e + 12b, e_1(X, L) = 2 - 2g_1(X, L) = -4e - 4b.$$

Next we calculate $e_2(X, L)$. Since

$$c_{2}(X) = \sum_{j=0}^{2} \sum_{k=0}^{j} {3-k \choose j-k} c_{k} (f^{*}(\mathcal{E}^{\vee})) H(\mathcal{E})^{j-k} c_{j-k} (f^{*}(\mathcal{T}_{C}))$$
$$= 3c_{1}(f^{*}(\mathcal{T}_{C})) H(\mathcal{E}) + 3H(\mathcal{E})^{2} + 2c_{1}(f^{*}(\mathcal{E}^{\vee})) H(\mathcal{E}),$$

we have

$$e_2(X,L) = \sum_{l=0}^{2} (-1)^l {2+l \choose l} c_{2-l}(X) (2H + f^*(B))^{1+l}$$

= 20e + 27b.

Next we calculate $e_3(X, L)$. We note that $e_3(X, L) = e(X)$. Since

$$\begin{array}{rcl} b_0(X) & = & 1, \\ b_1(X) & = & 2g(C), \\ b_2(X) & = & 2, \\ b_3(X) & = & 2g(C), \end{array}$$

we have $e_3(X, L) = e(X) = 6 - 6g(C) = 3e + 6b$.

Furthermore we calculate $b_i(X, L)$. Then

$$b_0(X, L) = 8e + 12e,$$

$$b_1(X, L) = 2(1 + 2e + 2b),$$

$$b_2(X, L) = 19e + 25b,$$

$$b_3(X, L) = 2 - e - 2b.$$

Example 3.7 The case where (X, L) is a Del Pezzo manifold with $n = \dim X \ge 3$. Here we note that by [2, (8.11) Theorem], we have $L^n \le 8$ and (X, L) is one of the following:

 $(3.7.1) (X, L) \cong (\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(2)).$

First we calculate $e_i(X, L)$. Since

$$e_{i}(X,L) = \sum_{l=0}^{i} (-1)^{l} \binom{n-i+l-1}{l} c_{i-l}(X) L^{n-i+l}$$
$$= \sum_{l=0}^{i} (-1)^{l} \binom{n-i+l-1}{l} \binom{n+1}{i-l} 2^{n-i+l},$$

we have

$$\begin{array}{lll} e_0(X,L) & = & \left((-1)^0 \binom{2}{0} \binom{4}{0} 2^0\right) 2^3 = 8, \\ e_1(X,L) & = & \left((-1)^0 \binom{1}{0} \binom{4}{1} 2^0 + (-1)^1 \binom{2}{1} \binom{4}{0} 2^1\right) 2^2 = 0, \\ e_2(X,L) & = & \left((-1)^0 \binom{0}{0} \binom{4}{2} 2^0 + (-1)^1 \binom{1}{1} \binom{4}{1} 2^1 + (-1)^2 \binom{2}{2} \binom{4}{0} 2^2\right) 2 = 4, \\ e_3(X,L) & = & \left((-1)^0 \binom{-1}{0} \binom{4}{3} 2^0 + (-1)^1 \binom{0}{1} \binom{4}{2} 2^1 + (-1)^2 \binom{1}{2} \binom{4}{1} 2^2 + (-1)^3 \binom{2}{3} \binom{4}{0} 2^3\right) 2^0 = 4. \end{array}$$

Next we calculate $b_i(X, L)$. Since

$$b_j(X, \mathbb{C}) = \begin{cases} 1, & \text{if } j = 0, 2, \\ 0, & \text{if } j = 1, 3, \end{cases}$$

we have

$$b_0(X,L) = e_0(X,L) = 8,$$

$$b_1(X,L) = -e_1(X,L) + 2b_0(X) = 2,$$

$$b_2(X,L) = e_2(X,L) - 2(b_0(X) - b_1(X)) = 2,$$

$$b_3(X,L) = -e_3(X,L) + 2(b_0(X) - b_1(X) + b_2(X)) = 0.$$

(3.7.2) X is the blowing up of \mathbb{P}^3 at a point and $L = \pi^*(\mathcal{O}_{\mathbb{P}^3}(2)) - E$, where $\pi: X \to \mathbb{P}^3$ is its birational morphism and E is the exceptional divisor. Then by [3, Theorem 3.2] and (3.7.1) above, we have

$$e_0(X, L) = 7,$$

 $e_1(X, L) = 0,$
 $e_2(X, L) = 5,$
 $e_3(X, L) = 6.$

and

$$b_0(X, L) = 7,$$

 $b_1(X, L) = 2,$
 $b_2(X, L) = 3,$
 $b_3(X, L) = 0.$

(3.7.3) (X, L) is either

$$(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \otimes_{i=1}^3 p_i^* \mathcal{O}_{\mathbb{P}^1}(1)), (\mathbb{P}^2 \times \mathbb{P}^2, \otimes_{i=1}^2 p_i^* \mathcal{O}_{\mathbb{P}^2}(1)) \text{ or } (\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2}), H(T_{\mathbb{P}^2}))$$

where p_i is the *i*th projection and $T_{\mathbb{P}^2}$ is the tangent bundle of \mathbb{P}^2 .

(3.7.3.1) The case where $(X, L) \cong (\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \otimes_{i=1}^3 p_i^* \mathcal{O}_{\mathbb{P}^1}(1))$. Since $\mathcal{T}_X \cong \bigoplus_{j=1}^3 p_j^* (\mathcal{T}_{\mathbb{P}^1})$, we have

$$\begin{array}{lcl} c_{1}(\mathcal{T}_{X}) & = & \displaystyle \sum_{j=1}^{3}p_{j}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}}) \\ & = & \displaystyle \sum_{j=1}^{3}p_{j}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2)), \\ c_{2}(\mathcal{T}_{X}) & = & \displaystyle p_{1}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}})p_{2}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}}) + p_{1}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}})p_{3}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}}) + p_{2}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}})p_{3}^{*}c_{1}(\mathcal{T}_{\mathbb{P}^{1}}) \\ & = & \displaystyle p_{1}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2))p_{2}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2)) + p_{1}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2))p_{3}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2)) + p_{2}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2))p_{3}^{*}c_{1}(\mathcal{O}_{\mathbb{P}^{1}}(2)) \\ c_{3}(X) & = & e(X). \end{array}$$

On the other hand

$$b_0(X) = 1,$$

 $b_1(X) = 0,$
 $b_2(X) = 3,$
 $b_3(X) = 0.$

Therefore

$$e_0(X,L) = L^3 = 6,$$

$$e_1(X,L) = \sum_{l=0}^{1} (-1)^l {1+l \choose l} c_{1-l}(X) L^{2+l} = 0,$$

$$e_2(X,L) = \sum_{l=0}^{2} (-1)^l {l \choose l} c_{2-l}(X) L^{1+l} = 6,$$

$$e_3(X,L) = e(X) = 8,$$

and

$$b_0(X, L) = e_0(X, L) = 6,$$

$$b_1(X, L) = -e_1(X, L) + 2b_0(X) = 2,$$

$$b_2(X, L) = e_2(X, L) - 2(b_0(X) - b_1(X)) = 4,$$

$$b_3(X, L) = -e_3(X, L) + 2(b_0(X) - b_1(X) + b_2(X)) = 0.$$

(3.7.3.2) The case where $(X, L) \cong (\mathbb{P}^2 \times \mathbb{P}^2, \otimes_{i=1}^2 p_i^* \mathcal{O}_{\mathbb{P}^2}(1))$. Since $\mathcal{T}_X \cong \bigoplus_{j=1}^2 p_j^* (\mathcal{T}_{\mathbb{P}^2})$, we have

$$\begin{split} c_1(\mathcal{T}_X) &= \sum_{j=1}^2 p_j^* c_1(\mathcal{T}_{\mathbb{P}^2}) \\ &= \sum_{j=1}^2 p_j^* c_1(\mathcal{O}_{\mathbb{P}^2}(3)), \\ c_2(\mathcal{T}_X) &= p_1^* c_2(\mathcal{T}_{\mathbb{P}^2}) + p_1^* c_1(\mathcal{T}_{\mathbb{P}^2}) p_2^* c_1(\mathcal{T}_{\mathbb{P}^2}) + p_2^* c_2(\mathcal{T}_{\mathbb{P}^2}) \\ &= 3 p_1^* \mathcal{O}_{\mathbb{P}^2}(1)^2 + 9 p_1^* \mathcal{O}_{\mathbb{P}^2}(1) p_2^* \mathcal{O}_{\mathbb{P}^2}(1) + 3 p_2^* \mathcal{O}_{\mathbb{P}^2}(1)^2, \\ c_3(\mathcal{T}_X) &= p_1^* c_2(\mathcal{T}_{\mathbb{P}^2}) p_2^* c_1(\mathcal{T}_{\mathbb{P}^2}) + p_1^* c_1(\mathcal{T}_{\mathbb{P}^2}) p_2^* c_2(\mathcal{T}_{\mathbb{P}^2}) \\ &= 9 p_1^* \mathcal{O}_{\mathbb{P}^2}(1)^2 p_2^* \mathcal{O}_{\mathbb{P}^2}(1) + 9 p_1^* \mathcal{O}_{\mathbb{P}^2}(1) p_2^* \mathcal{O}_{\mathbb{P}^2}(1)^2, \\ c_4(X) &= e(X). \end{split}$$

On the other hand

$$\begin{array}{lll} b_0(X) & = & 1, \\ b_1(X) & = & 2q(X) = 0, \\ b_2(X) & = & 2b_2(\mathbb{P}^2)b_0(\mathbb{P}^2) + b_1(\mathbb{P}^2)b_1(\mathbb{P}^2) = 2, \\ b_3(X) & = & 2b_3(\mathbb{P}^2)b_0(\mathbb{P}^2) + 2b_2(\mathbb{P}^2)b_1(\mathbb{P}^2) = 0, \\ b_4(X) & = & 2b_4(\mathbb{P}^2)b_0(\mathbb{P}^2) + 2b_3(\mathbb{P}^2)b_1(\mathbb{P}^2) + b_2(\mathbb{P}^2)b_2(\mathbb{P}^2) = 3. \end{array}$$

Therefore

$$\begin{aligned} e_0(X,L) &= L^4 = 6, \\ e_1(X,L) &= \sum_{l=0}^1 (-1)^l \binom{2+l}{l} c_{1-l}(X) L^{3+l} = 0, \\ e_2(X,L) &= \sum_{l=0}^2 (-1)^l \binom{1+l}{l} c_{2-l}(X) L^{2+l} = 6, \\ e_3(X,L) &= \sum_{l=0}^3 (-1)^l \binom{l}{l} c_{3-l}(X) L^{1+l} = 6, \\ e_4(X,L) &= e(X) = 9, \end{aligned}$$

and

$$\begin{array}{lcl} b_0(X,L) & = & e_0(X,L) = 6, \\ b_1(X,L) & = & -e_1(X,L) + 2b_0(X) = 2, \\ b_2(X,L) & = & e_2(X,L) - 2(b_0(X) - b_1(X)) = 4, \\ b_3(X,L) & = & -e_3(X,L) + 2(b_0(X) - b_1(X) + b_2(X)) = 0, \\ b_4(X,L) & = & e_4(X,L) - 2(b_0(X) - b_1(X) + b_2(X) - b_3(X)) = 3. \end{array}$$

(3.7.3.3) The case where $(X, L) \cong (\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2}), H(T_{\mathbb{P}^2})).$

First we note that

$$b_0(X) = 1,$$

 $b_1(X) = 0,$
 $b_2(X) = 2,$
 $b_3(X) = 0.$

Then by [4, Corollary 3.1 (3.1.2)and Corollary 3.3 (3.3.2)] we have

$$\begin{array}{lcl} e_0(X,L) & = & s_2(\mathcal{T}_{\mathbb{P}^2}) = K_{\mathbb{P}^2}^2 - c_2(\mathbb{P}^2) = 6, \\ e_1(X,L) & = & -(c_1(\mathcal{T}_{\mathbb{P}^2}) + K_{\mathbb{P}^2})c_1(\mathcal{T}_{\mathbb{P}^2}) = 0, \\ e_2(X,L) & = & c_2(\mathbb{P}^2) + c_2(\mathcal{T}_{\mathbb{P}^2}) = 6, \\ e_3(X,L) & = & 2e(\mathbb{P}^2) = 6, \end{array}$$

and

$$\begin{array}{lcl} b_0(X,L) & = & e_0(X,L) = 6, \\ b_1(X,L) & = & (c_1(\mathcal{T}_{\mathbb{P}^2}) + K_{\mathbb{P}^2})c_1(\mathcal{T}_{\mathbb{P}^2}) + 2 = 2, \\ b_2(X,L) & = & b_2(X) + c_2(\mathbb{P}^2) - 1 = 4, \\ b_3(X,L) & = & b_3(X) = 0. \end{array}$$

(3.7.4) The case where (X, L) is a linear section of the Grassmann variety Gr(5, 2) parametrizing lines in \mathbb{P}^4 , embedded in \mathbb{P}^9 via the Plücker embedding. Then $3 \le n \le 6$ and $L^n = 5$.

Remark 3.1 Here we review the Chern class of Gr(p,q) parametrizing \mathbb{P}^{q-1} in \mathbb{P}^{p-1} (see [7, Chapter 14, 14.7]).

(i) Let S (resp. Q) be the universal subbundle (resp. the universal quotient bundle) of Gr(p,q). Then

$$c(Gr(p,q)) = c(S^{\vee} \otimes Q). \tag{1}$$

We note that rank S = q and rank Q = p - q. From (1),

$$ch(\mathcal{T}_{Gr(p,q)}) = ch(S^{\vee})ch(Q) \tag{2}$$

holds. Since ch(Q) + ch(S) = p, we have

$$ch(S) = q - \sum_{k \ge 1} ch_k(Q).$$

On the other hand

$$ch(S^{\vee}) = q - \sum_{k>1} (-1)^k ch_k(Q).$$
 (3)

(ii) Let $A_0 \subseteq A_1 \subseteq \ldots \subseteq A_{q-1} \subset \mathbb{P}^{p-1}$ be a flag of subspaces with $a_i = \dim A_i$, and let $\Omega(A_0, \dots, A_{q-1}) = \{ L \in Gr(p, q) \mid \dim(L \cap A_i) \ge i, 0 \le i \le q-1 \}.$

Then $\Omega(A_0,\ldots,A_{q-1})$ is a subvariety of dimension $\sum_{i=0}^{q-1}(a_i-i)$, which is called a *Schubert variety*. Then we set $(a_0,\ldots,a_{q-1})=[\Omega(A_0,\ldots,A_{q-1})]$. (iii) Next we explain the Schubert caliculas. For $\lambda=(\lambda_0,\ldots,\lambda_{q-1})$ with $p-q\geq\lambda_0\geq\ldots\geq 1$

$$\{\lambda_0, \dots, \lambda_{q-1}\} = \det(c_{\lambda_i + j - i}(Q))_{0 \le i, j \le q - 1}.$$

Then $c_m(Q) = \{m, 0, \dots, 0\}$. We note that the following equality holds.

$$\{\lambda\} \cdot c_m(Q) = \sum \{\mu\},\tag{4}$$

where the sum over μ with $p-q \geq \mu_0 \geq \lambda_0 \geq \cdots \geq \mu_{q-1} \geq \lambda_{q-1}$ and $\sum_{i=0}^{q-1} \lambda_i = -m + 1$

Moreover we have

$$\int_{Gr(p,q)} c_1(Q)^k \{\lambda_0, \dots, \lambda_{q-1}\} = \int_{Gr(p,q)} c_1(Q)^k (a_0, \dots, a_{q-1}) = \frac{k!}{a_0! \cdots a_{q-1}!} \prod_{i < j} (a_j - a_i).$$
(5)

Here $a_i = p - q + i - \lambda_i$, $k = \sum_{i=0}^{q-1} a_i - \frac{(q-1)q}{2} = \dim \operatorname{Gr}(p,q) - \sum_{i=0}^{q-1} \lambda_i = q(p-q) - \sum_{i=0}^{q-1} \lambda_i$.

Now we consider the case where X = Gr(5,2). Then first we calculate $c_i(Gr(5,2))$ for $1 \le j \le 5$. From (2) and (3), we have

$$ch(\operatorname{Gr}(5,2)) = ch(S^{\vee})ch(Q)$$

$$= \left(2 - \sum_{k \ge 1} (-1)^k ch_k(Q)\right) \left(3 + \sum_{k \ge 1} ch_k(Q)\right).$$

Using this, we get the following. (Here we note that $c_j(Q) = 0$ for $j \ge 4$ because rankQ = 3.)

$$c_1(Gr(5,2)) = 5c_1(Q)$$

$$c_2(Gr(5,2)) = 12c_1(Q)^2 - c_2(Q)$$

$$c_3(Gr(5,2)) = 20c_1(Q)^3 - 10c_1(Q)c_2(Q) + 5c_3(Q)$$

$$c_4(Gr(5,2)) = 28c_1(Q)^4 - 38c_1(Q)^2c_2(Q) + 20c_1(Q)c_3(Q) + 7c_2(Q)^2$$

$$c_5(\operatorname{Gr}(5,2)) = 36c_1(Q)^5 - 90c_1(Q)^3c_2(Q) + 40c_1(Q)^2c_3(Q) + 45c_1(Q)c_2(Q)^2 - 10c_2(Q)c_3(Q).$$

Next we use the Schubert caliculas. First from (5) we get the following.

$$c_1(Q)^6 = 5,$$

 $c_1(Q)^4 c_2(Q) = 3,$
 $c_1(Q)^3 c_3(Q) = 1.$

Next we calculate $c_2(Q)^2 c_1(Q)^2$. Since $\{2,0\} \cdot \{2,0\} = \{3,1\} + \{2,2\}$, we have

$$\int_{Gr(5,2)} c_2(Q)^2 c_1(Q)^2 = \int_{Gr(5,2)} c_1(Q)^2 \{3,1\} + \int_{Gr(5,2)} c_1(Q)^2 \{2,2\}$$

$$= \int_{Gr(5,2)} c_1(Q)^2 (0,3) + \int_{Gr(5,2)} c_1(Q)^2 (1,2)$$

$$= 2.$$

Next we calculate $c_2(Q)c_3(Q)c_1(Q)$. Since $\{2,0\} \cdot \{3,0\} = \{3,2\}$, we have

$$\int_{Gr(5,2)} c_2(Q)c_3(Q)c_1(Q) = \int_{Gr(5,2)} c_1(Q)\{3,2\} = \int_{Gr(5,2)} c_1(Q)(0,2)$$

$$= 1.$$

Hence

$$\begin{array}{rcl} c_1(\operatorname{Gr}(5,2))L^5 &=& 5c_1(Q)^6 = 25 \\ c_2(\operatorname{Gr}(5,2))L^4 &=& 12c_1(Q)^6 - c_1(Q)^4c_2(Q) = 57 \\ c_3(\operatorname{Gr}(5,2))L^3 &=& 20c_1(Q)^6 - 10c_1(Q)^4c_2(Q) + 5c_1(Q)^3c_3(Q) = 75 \\ c_4(\operatorname{Gr}(5,2))L^2 &=& 28c_1(Q)^6 - 38c_1(Q)^4c_2(Q) + 20c_1(Q)^3c_3(Q) + 7c_1(Q)^2c_2(Q)^2 = 60 \\ c_5(\operatorname{Gr}(5,2))L &=& 36c_1(Q)^6 - 90c_1(Q)^4c_2(Q) + 40c_1(Q)^3c_3(Q) \\ && + 45c_1(Q)^2c_2(Q)^2 - 10c_1(Q)c_2(Q)c_3(Q) = 30. \end{array}$$

Therefore

$$\begin{array}{lll} e_0(X,L) & = & L^6 = 5, \\ e_1(X,L) & = & c_1(X)L^5 - 5L^6 = 0, \\ e_2(X,L) & = & c_2(X)L^4 - 4c_1(X)L^5 + 10L^6 = 7, \\ e_3(X,L) & = & c_3(X)L^3 - 3c_2(X)L^4 + 6c_1(X)L^5 - 10L^6 = 4, \\ e_4(X,L) & = & c_4(X)L^2 - 2c_3(X)L^3 + 3c_2(X)L^4 - 4c_1(X)L^5 + 5L^6 = 6, \\ e_5(X,L) & = & c_5(X)L - c_4(X)L^2 + c_3(X)L^3 - c_2(X)L^4 + c_1(X)L^5 - L^6 = 8, \\ e_6(X,L) & = & e(X) = 10. \end{array}$$

Next we calculate $b_i(X, L)$. Since $b_0(X) = b_2(X) = 1$, $b_4(X) = b_6(X) = b_8(X) = 2$ $b_{10}(X) = b_{12}(X) = 1$ and $b_i(X) = 0$ for every positive odd integer j, we have

$$\begin{array}{rcl} b_0(X,L) & = & 5, \\ b_1(X,L) & = & 2, \\ b_2(X,L) & = & 5, \\ b_3(X,L) & = & 0, \\ b_4(X,L) & = & 2, \\ b_5(X,L) & = & 4, \\ b_6(X,L) & = & 2. \end{array}$$

If (X, L) is a linear section of Gr(5, 2), then $3 \le n \le 5$ and from above we get

$$e_0(X, L) = 5,$$

 $e_1(X, L) = 0,$
 $e_2(X, L) = 7,$
 $e_3(X, L) = 4,$
 $e_4(X, L) = 6 \text{ if } n = 4, 5,$
 $e_5(X, L) = 8 \text{ if } n = 5.$
 $b_0(X, L) = 5,$

$$\begin{array}{lcl} b_1(X,L) & = & 2, \\ b_2(X,L) & = & 5, \\ b_3(X,L) & = & 0, \\ b_4(X,L) & = & 2 \text{ if } n = 4,5, \\ b_5(X,L) & = & 4 \text{ if } n = 5. \end{array}$$

(3.7.5) The case where (X, L) is a complete intersection of two hyperquadrics in \mathbb{P}^{n+2} . Then $L^n = 4$. First we calculate e(X) in this case. In general we can prove the following.

Lemma 3.1 Let (X, L) be a complete intersection of two hypersurfaces of degree s and t in \mathbb{P}^{n+2} . Then

$$e(X) = -\frac{s}{t^2}(1-t)^{n+3}\sum_{k=0}^{n-1} \left(\frac{s}{t}\right)^k + \frac{s}{t^2}\sum_{j=0}^{n-1} \left(\frac{s}{t}\right)^j \sum_{k=0}^{2+j} (-t)^k \binom{n+3}{n+3-k} + (-s)^{n+1}(-t).$$

Proof. Let $c_j := c_j(X)$ and $H := \mathcal{O}_X(1)$. Then the following holds (see [7, Example 3.2.12]).

$$(1+H)^{n+3} = C(X)(1+sH)(1+tH).$$

Here $C(X) = (1 + c_1 + \cdots + c_n)$. Hence

$$(c_{n} + sc_{n-1}H) + t(c_{n-1}H + sc_{n-2}H^{2}) = {n+3 \choose n}H^{n}$$

$$(c_{n-1} + sc_{n-2}H) + t(c_{n-2}H + sc_{n-3}H^{2}) = {n+3 \choose n-1}H^{n-1}$$

$$\vdots$$

$$(c_{2} + sc_{1}H) + t(c_{1}H + sc_{0}H^{2}) = {n+3 \choose 2}H^{2}$$

Hence

$$c_n + sc_{n-1}H + (-t)^{n-2} \cdot t(c_1H^{n-1} + sc_0H^n)$$

$$= \left(\binom{n+3}{n} + (-t)\binom{n+3}{n-1} + \dots + (-t)^{n-3}\binom{n+3}{3} + (-t)^{n-2}\binom{n+3}{2} \right) H^n$$

Moreover since $c_1H^{n-1} = \mathcal{O}(n-s-t+3)H^{n-1}$, we have $c_1H^{n-1} + sc_0H^n = (n-t+3)H^n$. Therefore

$$c_{n} + sc_{n-1}H$$

$$= \left(\binom{n+3}{n} + (-t)\binom{n+3}{n-1} + \cdots + (-t)^{n-3}\binom{n+3}{3} + (-t)^{n-2}\binom{n+3}{2} + (-t)^{n-1}\binom{n+3}{1} + (-t)^{n}\right)H^{n}$$

$$= -\frac{s}{t^{2}}\left((-t)^{3}\binom{n+3}{n} + (-t)^{4}\binom{n+3}{n-1} + \cdots + (-t)^{n}\binom{n+3}{3} + (-t)^{n+1}\binom{n+3}{2} + (-t)^{n+2}\binom{n+3}{1} + (-t)^{n+3}\right)$$

$$= -\frac{s}{t^{2}}\left((1-t)^{n+3} - 1 - (-t)^{1}\binom{n+3}{n+2} - (-t)^{2}\binom{n+3}{n+1}\right)$$

$$= -\frac{s}{t^{2}}\left((1-t)^{n+3} - 1 + t\binom{n+3}{n+2} - t^{2}\binom{n+3}{n+1}\right).$$

By the same argument as above for every j with $1 \le j \le n-1$ we have

$$c_{j}H^{n-j} + sc_{j-1}H^{n-j+1}$$

$$= \frac{s}{(-t)^{n-j+2}} \left((1-t)^{n+3} - \sum_{k=0}^{n+2-j} (-t)^{k} {n+3 \choose n+3-k} \right).$$

Hence

$$c_n = -\frac{s}{t^2} (1-t)^{n+3} \sum_{k=0}^{n-1} \left(\frac{s}{t}\right)^k + \frac{s}{t^2} \sum_{i=0}^{n-1} \left(\frac{s}{t}\right)^j \sum_{k=0}^{2+j} (-t)^k \binom{n+3}{n+3-k} + (-s)^{n+1} (-t). \tag{6}$$

Lemma 3.2 Let (X,L) be a complete intersection of two hyperquadrics in \mathbb{P}^{n+2} . Then

$$e(X) = \begin{cases} 2n+4, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd.} \end{cases}$$

Proof. By Lemma 3.1 we have

$$c_n = (-2)^{n+2} + \frac{1}{2} \left(n(-1)^n + \sum_{j=1}^n \sum_{k=0}^{n+2-j} (-2)^k \binom{n+3}{n+3-k} \right).$$

Next we prove the following.

Claim 3.1

$$(-2)^{n+2} + \frac{1}{2} \left(n(-1)^n + \sum_{j=1}^n \sum_{k=0}^{n+2-j} (-2)^k \binom{n+3}{n+3-k} \right)$$

$$= \begin{cases} 0, & n \text{ is odd,} \\ 2n+4, & n \text{ is even.} \end{cases}$$
(7)

Proof. First we note the following.

$$\sum_{j=1}^{n} \sum_{k=0}^{n+2-j} (-2)^k \binom{n+2}{n+2-k}$$

$$= \sum_{j=1}^{n} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + \sum_{j=1}^{n} (-2)^{n+2-j} \binom{n+2}{j}$$

$$= \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + \sum_{k=0}^{n} (-2)^k \binom{n+2}{n+2-k} + \sum_{j=1}^{n} (-2)^{n+2-j} \binom{n+2}{j},$$
(8)

$$\sum_{j=1}^{n} \sum_{k=0}^{n+2-j} (-2)^k \binom{n+2}{n+3-k} = \sum_{j=1}^{n} \sum_{k=1}^{n+2-j} (-2)^k \binom{n+2}{n+3-k}$$

$$= \sum_{j=1}^{n} \sum_{k=0}^{n+1-j} (-2)^{k+1} \binom{n+2}{n+2-k}$$
(9)

$$= \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^{k+1} \binom{n+2}{n+2-k}$$

$$+ \sum_{k=0}^{1} (-2)^{k+1} \binom{n+2}{n+2-k}$$

$$= -2 \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k}$$

$$+ \sum_{k=0}^{1} (-2)^{k+1} \binom{n+2}{n+2-k}.$$

Then from (8) and (9) we have

$$\sum_{j=1}^{n} \sum_{k=0}^{n+2-j} (-2)^k \left(\binom{n+2}{n+2-k} + \binom{n+2}{n+2-k} \right)$$

$$= -\sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} - \sum_{k=0}^{1} (-2)^k \binom{n+2}{n+2-k} + \sum_{j=1}^{n} (-2)^{n+2-j} \binom{n+2}{j}$$

$$= -\sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + 4n + 6 + (-1)^{n+2} - (-2)^{n+2}.$$
(10)

Here we prove (7) by induction on n.

If n = 1 and 2, then (7) holds.

Next we assume that (7) holds for n-1 is odd. Then by assumption we have the following equality.

$$(-2)^{n+1} + \frac{1}{2} \left((n-1)(-1)^{n-1} + \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} \right) = 0.$$
 (11)

Then by using (11), we have

$$(-2)^{n+2} + \frac{1}{2} \left(n(-1)^n + \sum_{j=1}^n \sum_{k=0}^{n+2-j} (-2)^k \binom{n+3}{n+3-k} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(n(-1)^n - \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + 4n + 6 + (-1)^{n+2} - (-2)^{n+2} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(n - \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + 4n + 6 + (-1)^{n+2} - (-2)^{n+2} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(n - \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + 4n + 6 + 1 - (-2)^{n+2} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(5n + 7 + 2(-2)^{n+1} (n-1)(-1)^{n-1} \right)$$

$$= 2n + 4.$$

Next we assume that (7) holds for n-1 is even. Then by assumption we have the following equality.

$$(-2)^{n+1} + \frac{1}{2} \left((n-1)(-1)^{n-1} + \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} \right) = 2n+2.$$
 (12)

Then by using (12), we have

$$(-2)^{n+2} + \frac{1}{2} \left(n(-1)^n + \sum_{j=1}^n \sum_{k=0}^{n+2-j} (-2)^k \binom{n+3}{n+3-k} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(-n - \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} + 4n + 6 + (-1)^{n+2} - (-2)^{n+2} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(3n + 5 - \sum_{j=1}^{n-1} \sum_{k=0}^{n+1-j} (-2)^k \binom{n+2}{n+2-k} - (-2)^{n+2} \right)$$

$$= (-2)^{n+2} + \frac{1}{2} \left(3n + 5 + 2(-2)^{n+1} + (n-1)(-1)^{n-1} - 2(2n+2) - (-2)^{n+2} \right)$$

$$= 0.$$

This completes the proof of Claim 3.1.

From Claim 3.1 we get Lemma 3.2.

Remark 3.2 Let (X, L) be a complete intersection of two hypersurfaces of degree s and t in \mathbb{P}^{n+2} . Then from (6) we can write e(X) as follows.

$$e(X) = (-1)^n st \left(\sum_{k=0}^n (-1)^k \binom{n+3}{k} \left(\sum_{j=0}^{n-k} s^{n-k-j} t^j \right) \right).$$

Proof.

$$c_{n} = -\frac{s}{t^{2}}(1-t)^{n+3}\left(1+\frac{s}{t}+\cdots+\left(\frac{s}{t}\right)^{n-1}\right) + \frac{s}{t^{2}}\left\{\left(1+(-t)\binom{n+3}{n+2}+(-t)^{2}\binom{n+3}{n+1}\right)\right\}$$

$$+\frac{s}{t}\left(1+(-t)\binom{n+3}{n+2}+(-t)^{2}\binom{n+3}{n+1}+(-t)^{3}\binom{n+3}{n}\right)$$

$$+\cdots+\left(\frac{s}{t}\right)^{n-1}\left(1+(-t)\binom{n+3}{n+2}+\cdots+(-t)^{n+1}\binom{n+3}{2}\right)\right\} + (-s)^{n+1}(-t)$$

$$= -\frac{s}{t^{2}}\left((-t)^{3}\binom{n+3}{n}+\cdots+(-t)^{n+3}\right)\left(1+\frac{s}{t}+\cdots+\left(\frac{s}{t}\right)^{n-1}\right)$$

$$+\frac{s}{t^{2}}\left(\sum_{j=1}^{n-1}\left(\frac{s}{t}\right)^{j}\sum_{k=P_{1}}^{j}(-t)^{2+k}\binom{n+3}{n+1-k}\right) + (-s)^{n+1}(-t)$$

$$= -\frac{s}{t^{2}}\left((-t)^{3}\binom{n+3}{n}+\cdots+(-t)^{n+3}\right) - \frac{s^{2}}{t^{3}}\left((-t)^{4}\binom{n+3}{n-1}+\cdots+(-t)^{n+3}\right)$$

$$-\frac{s^{3}}{t^{4}}\left((-t)^{5}\binom{n+3}{n-2}+\cdots+(-t)^{n+3}\right)\cdots - \frac{s^{n}}{t^{n+1}}\left((-t)^{n+2}\binom{n+3}{n}+(-t)^{n+3}\right)$$

$$+(-s)^{n+1}(-t)$$

$$= (-s)\left((-t)\binom{n+3}{n} + \dots + (-t)^{n+1}\right) + s^2\left((-t)\binom{n+3}{n-1} + \dots + (-t)^n\right)$$

$$-s^3\left((-t)\binom{n+3}{n-2} + \dots + (-t)^{n-1}\right) \dots + (-s)^n\left((-t)\binom{n+3}{1} + (-t)^2\right) + (-s)^{n+1}(-t)$$

$$= \sum_{j=1}^{n+1}(-s)(-t)^j\binom{n+3}{n+1-j} + \sum_{j=1}^n(-s)^2(-t)^j\binom{n+3}{n-j} + \sum_{j=1}^{n-1}(-s)^3(-t)^j\binom{n+3}{n-1-j} + \dots + \sum_{j=1}^2(-s)^n(-t)^j\binom{n+3}{2-j} + \sum_{j=1}^1(-s)^{n+1}(-t)^j\binom{n+3}{1-j} + \dots + \sum_{j=1}^1(-s)^n(-t)^{j-1}\binom{n+3}{n-1-j} + \dots + \sum_{j=1}^1(-s)^n(-t)^{j-1}\binom{n+3}{n-j} + \dots + \sum_{j=1}^1(-s)^n(-t)^{j-1}\binom{n+3}{n-j} + \dots + \sum_{j=1}^1(-s)^n(-t)^j\binom{n+3}{n-j} + \dots + \sum_{j=1}^1(-s)^n(-t)^j\binom{n+3}{n$$

So we get the assertion.

Here we go back to the case (3.7.5). In this case, there exists a smooth ladder $X \supset X_1 \supset \cdots \supset X_{n-1}$ of L such that (X_j, L_j) is complete intersection of two hyperquadrics in \mathbb{P}^{n-j+2} . Since $e_i(X, L) = e(X_{n-i})$, we see that

$$e_i(X, L) = \begin{cases} 2i + 4, & \text{if } i \text{ is even with } i \geq 2, \\ 0, & \text{if } i \text{ is odd with } i \geq 3. \end{cases}$$

We also note that

$$e_i(X, L) = \begin{cases} 4, & \text{if } i = 0, \\ 0, & \text{if } i = 1. \end{cases}$$

Next we calculate $b_i(X, L)$. Since

$$b_i(X) = \begin{cases} 1, & \text{if } i \text{ is even with } i \leq n - 1, \\ 0, & \text{if } i \text{ is odd with } i \leq n - 1, \end{cases}$$

we have

$$b_i(X, L) = \begin{cases} 2i + 4 - 2\frac{i}{2} = i + 4, & \text{if } i \text{ is even with } i \ge 2, \\ 0 + 2\frac{i+1}{2} = i + 1, & \text{if } i \text{ is odd with } i \ge 3. \end{cases}$$

We also note that

$$b_i(X, L) = \begin{cases} 4, & \text{if } i = 0, \\ 2, & \text{if } i = 1. \end{cases}$$

(3.7.6) The case where X is a hypercubic in \mathbb{P}^{n+1} and $L = \mathcal{O}_X(1)$.

Here we consider more general case than this. In general we can prove the following claim.

Lemma 3.3 Let (X, L) be a polarized manifold of dimension n such that X is a hypersurface of degree m and $L = \mathcal{O}_X(1)$. Then

$$e_{i}(X,L) = \frac{1}{m} \left((1-m)^{i+2} - 1 + m(i+2) \right),$$

$$b_{i}(X,L) = \begin{cases} \frac{1}{m} ((1-m)^{i+2} - 1 + m(i+2)) - i, & \text{if } i \text{ is even with } i \leq n-1, \\ -\frac{1}{m} ((1-m)^{i+2} - 1 + m(i+2)) + i + 1, & \text{if } i \text{ is odd with } i \leq n-1. \end{cases}$$

Proof. First we calculate $e_n(X, L)$. Let $c_j := c_j(X)$ and $H := \mathcal{O}_X(1)$. Then the following holds (see [7, Example 3.2.12]).

$$(1+H)^{n+2} = (1+c_1+\cdots+c_n)(1+mH).$$

Hence

$$c_{n} + mc_{n-1}H = \binom{n+2}{n}H^{n}$$

$$c_{n-1} + mc_{n-2}H = \binom{n+2}{n-1}H^{n-1}$$

$$\vdots$$

$$c_{1} + mH = \binom{n+2}{1}H$$

So we have

$$c_n = (-m)^n H^n + \frac{1}{m^2} \left((-m)^2 \binom{n+2}{2} + (-m)^3 \binom{n+2}{3} + \dots + (-m)^{n+1} \binom{n+2}{n+1} \right) H^n$$

$$= m(-m)^n + \frac{1}{m^2} \left((1-m)^{n+2} - 1 - (-m) \binom{n+2}{1} - (-m)^{n+2} \right) m$$

$$= \frac{1}{m} \left((1-m)^{n+2} - 1 + m(n+2) \right).$$

On the other hand, in this case, there exists a smooth ladder $X \supset X_1 \supset \cdots \supset X_{n-1}$ of L such that (X_j, L_j) is a hypersurface of degree m in \mathbb{P}^{n-j+1} . Since $e_i(X, L) = e(X_{n-i})$, by the above argument we see that

$$e_i(X, L) = \frac{1}{m} ((1-m)^{i+2} - 1 + m(i+2)).$$

Next we calculate $b_i(X, L)$. Since

$$b_i(X) = \begin{cases} 1, & \text{if } i \text{ is even with } i \leq n-1, \\ 0, & \text{if } i \text{ is odd with } i \leq n-1, \end{cases}$$

we have

$$\begin{array}{ll} b_i(X,L) & = & \left\{ \begin{array}{ll} \frac{1}{m} \left((1-m)^{i+2} - 1 + m(i+2) \right) - 2 \cdot \frac{i}{2}, & \text{if i is even with $i \leq n-1$,} \\ -\frac{1}{m} \left((1-m)^{i+2} - 1 + m(i+2) \right) + 2 \cdot \frac{i+1}{2}, & \text{if i is odd with $i \leq n-1$.} \end{array} \right. \\ & = & \left\{ \begin{array}{ll} \frac{1}{m} ((1-m)^{i+2} - 1 + m(i+2)) - i, & \text{if i is even with $i \leq n-1$.} \\ -\frac{1}{m} ((1-m)^{i+2} - 1 + m(i+2)) + i + 1, & \text{if i is odd with $i \leq n-1$.} \end{array} \right. \end{array}$$

This completes the proof of Lemma 3.3.

(3.7.7) The case where X is a double covering of \mathbb{P}^n branched along a smooth hypersurface of degree 4, and L is the pull-back of $\mathcal{O}_{\mathbb{P}^n}(1)$. Here we consider more general case than this.

Lemma 3.4 Let X be a double covering of \mathbb{P}^n branched along a smooth hypersurface of degree m with even $m \geq 4$, and L is the pull-back of $\mathcal{O}_{\mathbb{P}^n}(1)$. Then

$$e_i(X,L) = i + 2 - \frac{1}{m}(m - 1 + (1 - m)^{i+1}),$$

$$b_i(X,L) = \left(i + 2 - \frac{1}{m}(m - 1 + (1 - m)^{i+1})\right) + (-1)^{i+1} \begin{cases} i & \text{if } i \text{ is even,} \\ i + 1 & \text{if } i \text{ is odd.} \end{cases}$$

Proof. First we calculate $e_n(X, L)$. Let B be the branch locus. Then

$$e(X) = 2e(\mathbb{P}^n) - e(B).$$

Hence by Lemma 3.3

$$e_n(X,L) = e(X)$$

$$= 2e(\mathbb{P}^n) - e(B)$$

$$= 2n + 2 - \frac{1}{m} ((1-m)^{n+1} + m(n+1) - 1)$$

$$= n + 2 - \frac{1}{m} (m - 1 + (1-m)^{n+1}).$$

Next we consider $e_i(X,L)$. First we note that $\Delta(X,L)=1$ in this case. Since $\operatorname{Bs}|L|=\emptyset$, there exists a smooth ladder $X\supset X_1\supset\cdots\supset X_{n-1}$ of L. Then we see that $\Delta(X_j,L_j)=1$ and $L_j^{n-j}=2$, where $L_j:=L|_{X_j}$ because $g(X,L)=m/2-1\geq 1=\Delta(X,L)$ and $L^n=2=2\Delta(X,L)$. Hence X_j is a double covering of \mathbb{P}^{n-j} branched along a smooth hypersurface of degree 4, and L_j is the pull-back of $\mathcal{O}_{\mathbb{P}^{n-j}}(1)$. Since $e_i(X,L)=e(X_{n-i})$, by the above argument we see that for every integer i with $i\geq 1$, we have

$$e_i(X,L) = i + 2 - \frac{1}{m}(m-1 + (1-m)^{i+1}).$$
 (13)

Here we note that $e_0(X, L) = L^n = 2 = 0 + 2 - \frac{1}{4}(3 + (-3)^{0+1})$. Hence (13) also holds for i = 0.

Next we calculate $b_i(X, L)$. By the Barth-type theorem (see e.g. [8, Theorem 7.1.15]), we have

$$b_i(X) = \begin{cases} 1, & \text{if } i \text{ is even with } i \leq n-1, \\ 0, & \text{if } i \text{ is odd with } i \leq n-1. \end{cases}$$

Hence we have

$$b_{i}(X,L) = (-1)^{i} \left(e_{i}(X,L) - 2 \sum_{j=0}^{i-1} (-1)^{j} b_{j}(X) \right)$$

$$= (-1)^{i} \left(i + 2 - \frac{1}{m} (m - 1 + (1 - m)^{i+1}) - 2(-1)^{i} \cdot \begin{cases} \frac{i-1+1}{2} & \text{if } i \text{ is even,} \\ \frac{i-1}{2} + 1 & \text{if } i \text{ is odd,} \end{cases}$$

$$= \left(i + 2 - \frac{1}{m} (m - 1 + (1 - m)^{i+1}) \right) + (-1)^{i+1} \begin{cases} i & \text{if } i \text{ is even,} \\ i + 1 & \text{if } i \text{ is odd.} \end{cases}$$

We get the assertion of Lemma 3.4.

(3.7.8) The case where (X, L) is a weighted hypersurface of degree 6 in the weighted projective space $\mathbb{P}(3, 2, 1, \ldots, 1)$. Then $L^n = 1$ and $Bs|L| = \{p\}$ (see [1, (16.7) Theorem and Appendix 1]).

In this case, there exists a smooth ladder $X \supset X_1 \supset \cdots \supset X_{n-1}$ of L such that (X_j, L_j) is a weighted hypersurface of degree 6 in the weighted projective space $\mathbb{P}(3, 2, 1, \ldots, 1)$. Since $e_i(X, L) = e(X_{n-i})$, in order to calculate $e_i(X, L)$ for $i \geq 1$, it suffices to calculate e(X).

Let $\pi: X^* \to X$ be the blowing up at $p \in X$. Then $\pi^*(L) - E$ is base point free and let $f: X^* \to \mathbb{P}^{n-1}$ be the morphism defined by $|\pi^*(L) - E|$. In this case, there exists a projective bundle $p: V \to \mathbb{P}^{n-1}$ and a double covering $\rho: X^* \to V$ such that $f = p \circ \rho$. Here we note that $V = \mathbb{P}_{\mathbb{P}^{n-1}}(\mathcal{O}_{\mathbb{P}^{n-1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{n-1}})$. Let H_V be the tautological line bundle of V and let B be the branch locus of ρ . Then there exist $B_1 \in |H_V - 2\pi^*\mathcal{O}_{\mathbb{P}^{n-1}}(1)|$ and $B_2 \in |3H_V|$ such that $B_1 \cong \mathbb{P}^{n-1}$ and $B = B_1 + B_2$. Here we note that the following equality holds.

$$e(X) = e(X^*) - e(E) + 1,$$
 (14)

$$e(X^*) = 2e(V) - e(B),$$
 (15)

$$e(B) = e(B_1) + e(B_2).$$
 (16)

Therefore in order to calculate e(X), we need the value of e(E), $e(B_1)$, $e(B_2)$, and e(V).

First we note that

$$e(E) = e(\mathbb{P}^{n-1}) = n \tag{17}$$

and

$$e(B_1) = e(\mathbb{P}^{n-1}) = n. \tag{18}$$

Next we calculate e(V). By [1, Proof of Lemma in Appendix 2], we see that there exist the following three exact sequence:

$$0 \to 2H_V - 2\pi^* \mathcal{O}_{\mathbb{P}^{n-1}}(1) \to \mathcal{T}_V \to \mathcal{T}_{\mathbb{P}^{n-1}}|_V \to 0, \tag{19}$$

$$0 \to \mathcal{O}_V \to H^0(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(1))^{\vee} \otimes \pi^*(\mathcal{O}_{\mathbb{P}^{n-1}}(1)) \to \mathcal{T}_{\mathbb{P}^{n-1}}|_V \to 0, \tag{20}$$

$$0 \to T_{B_2} \to T_V|_{B_2} \to (3H_V)|_{B_2} \to 0.$$
 (21)

From (19), we have

$$c(\mathcal{T}_V) = c(2H_V - 2\pi^* \mathcal{O}_{\mathbb{P}^{n-1}}(1))c(\mathcal{T}_{\mathbb{P}^{n-1}}|_V).$$
(22)

Hence

$$c_n(V) = (2H_V - 2\pi^* \mathcal{O}_{\mathbb{P}^{n-1}}(1)) c_{n-1} (\mathcal{I}_{\mathbb{P}^{n-1}}|_V)$$

= $(2H_V - 2\pi^* \mathcal{O}_{\mathbb{P}^{n-1}}(1)) (n(\pi^* \mathcal{O}_{\mathbb{P}^{n-1}}(1))^{n-1}).$

By (20), we get

$$c((\pi^*\mathcal{O}_{\mathbb{P}^{n-1}}(1))^{\oplus n}) = c(\mathcal{O}_V)c(\pi^*\mathcal{T}_{\mathbb{P}^{n-1}}). \tag{23}$$

Hence

$$c_{n-1}(p^*\mathcal{T}_{\mathbb{P}^{n-1}}) = \binom{n}{n-1} \pi^*\mathcal{O}_{\mathbb{P}^{n-1}}(1))^{n-1}.$$

Therefore

$$c_{n}(V) = (2H_{V} - 2\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1))(n(\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1))^{n-1})$$

$$= 2nH_{V}\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1))^{n-1}$$

$$= 2n.$$
(24)

Next we calculate $e(B_2)$. Before this, we note the following. Let $\mathcal{E} := \mathcal{O}_{\mathbb{P}^{n-1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{n-1}}$ and let $H(\mathcal{E})$ be the tautological line bundle of $\mathbb{P}_{\mathbb{P}^{n-1}}(\mathcal{E})$. Then $V = \mathbb{P}_{\mathbb{P}^{n-1}}(\mathcal{E})$ and $H(\mathcal{E}) = H_V$. In this case, since $c_j(\mathcal{E}) = 0$ for any $j \geq 2$, we have $s_j(\mathcal{E}) = \mathcal{O}_{\mathbb{P}^{n-1}}(2)^j$. Therefore

$$H_V^j \pi^* \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{n-j} = \mathcal{O}_{\mathbb{P}^{n-1}}(1)^{n-j} s_{j-1}(\mathcal{E}) = 2^{j-1}.$$
 (25)

From (21), we have

$$c(\mathcal{T}|_{B_2}) = c(\mathcal{T}_{B_2})c(3H_V|_{B_2}).$$
 (26)

From (26) we obtain the following:

$$\begin{array}{rcl} c_{n-1}(B_2) + c_{n-2}(B_2)(3H_V|_{B_2}) & = & c_{n-1}(V)B_2 \\ c_{n-2}(B_2) + c_{n-3}(B_2)(3H_V|_{B_2}) & = & c_{n-2}(V)B_2 \\ & & \vdots \\ c_1(B_2) + 3H_V|_{B_2} & = & c_1(V)B_2 \end{array}$$

Therefore

$$c_{n-1}(B_2) = 3(c_{n-1}(V)H_V + (-3)c_{n-2}(V)H_V^2 + \dots + (-3)^{n-2}c_1(V)H^{n-1} + (-3)^{n-1}H^n).$$
(27)

On the other hand, by (22) we have

$$\begin{array}{lcl} c_{j}(V) & = & (2H_{V} - 2\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1))c_{j-1}(\mathcal{T}_{\mathbb{P}^{n-1}}|_{V}) + c_{j}(\mathcal{T}_{\mathbb{P}^{n-1}}|_{V}) \\ & = & 2\binom{n}{j-1}H_{V}\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1)^{j-1} + \binom{n}{j} - 2\binom{n}{j-1}\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1)^{j}. \end{array}$$

Hence by using (25) we get

$$c_{j}(V)H^{n-j} = 2\binom{n}{j-1}H_{V}^{n-j+1}\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1)^{j-1} + \left(\binom{n}{j} - 2\binom{n}{j-1}\right)H_{V}^{n-j}\pi^{*}\mathcal{O}_{\mathbb{P}^{n-1}}(1)^{j}$$

$$= 2^{n-j+1}\binom{n}{j-1} + 2^{n-j-1}\binom{n}{j} - 2\binom{n}{j-1}$$

$$= 2^{n-j}\binom{n}{j-1} + 2^{n-j-1}\binom{n}{j}.$$

Therefore

$$\sum_{j=1}^{n-1} (-3)^{n-j-1} c_j(V) H_V^{n-j} = 2 \sum_{j=1}^{n-1} (-6)^{n-j-1} \binom{n}{j-1} + \sum_{j=1}^{n-1} (-6)^{n-j-1} \binom{n}{j}.$$
 (28)

On the other hand

$$2\sum_{j=1}^{n-1} (-6)^{n-j-1} \binom{n}{j-1} = \frac{1}{18} \sum_{j=1}^{n-1} (-6)^{n-j+1} \binom{n}{j-1}$$
$$= \frac{1}{18} ((1+(-6))^n - (-6)n - 1)$$
$$= \frac{1}{18} ((-5)^n + 6n - 1),$$

and

$$\sum_{j=1}^{n-1} (-6)^{n-j-1} \binom{n}{j} = -\frac{1}{6} \sum_{j=1}^{n-1} (-6)^{n-j} \binom{n}{j}$$
$$= -\frac{1}{6} ((1+(-6))^n - (-6)^n - 1)$$
$$= \frac{1}{6} ((-6)^n - (-5)^n + 1).$$

Since $H_V^n = 2^{n-1}$, from (27) we get

$$c_{n-1}(B_2)$$

$$= 3\left(\frac{1}{18}((-5)^n + 6n - 1) + \frac{1}{6}((-6)^n - (-5)^n + 1) + (-3)^{n-1}2^{n-1}\right)$$

$$= -\frac{1}{3}(-5)^n + \frac{3n+1}{3}.$$
(29)

From (18) and (29), we have

$$e(B) = e(B_1) + e(B_2) = 2n + \frac{1 - (-5)^n}{3}.$$
(30)

By (24) and (30) we get

$$e(X^*) = 2e(V) - e(B) = 2n + \frac{(-5)^n - 1}{3}.$$
(31)

Therefore by (17) and (31)

$$e(X) = e(X^*) - e(E) + 1 = n + \frac{(-5)^n + 2}{3}.$$
 (32)

So we see that

$$e_i(X, L) = i + \frac{(-5)^i + 2}{3} \tag{33}$$

for every integer i with $1 \le i \le n$. Here we note that this equality holds for the case where i = 0.

Next we calculate $b_i(X, L)$. Since we see from [1, (16.6) 4)] that

$$b_j(X) = \begin{cases} 1, & \text{if } j \text{ is even with } j \leq n-1, \\ 0, & \text{if } j \text{ is odd with } j \leq n-1, \end{cases}$$

we have

$$\begin{array}{lcl} b_i(X,L) & = & (-1)^i \left(e_i(X,L) - 2 \sum_{j=0}^{i-1} (-1)^j b_j(X) \right) \\ \\ & = & (-1)^i \left(i + \frac{(-5)^i + 2}{3} \right) - 2 (-1)^i \cdot \left\{ \begin{array}{l} \frac{i}{2}, & \text{if i is even,} \\ \frac{i+1}{2} + 1, & \text{if i is odd,} \end{array} \right. \\ \\ & = & \left\{ \begin{array}{l} (-1)^i \frac{(-5)^i + 2}{3}, & \text{if i is even,} \\ (-1)^i \frac{(-5)^i - 1}{3}, & \text{if i is odd.} \end{array} \right. \end{array}$$

Example 3.8 The case where (X, L) is a hyperquadric fibration over a smooth curve C. Let $f: X \to C$ be its morphism. We put $\mathcal{E} := f_*(L)$. Then \mathcal{E} is a locally free sheaf of rank n+1 on C. Let $\pi: \mathbb{P}_C(\mathcal{E}) \to C$ be the projection. Then there exists an embedding $i: X \hookrightarrow \mathbb{P}_C(\mathcal{E})$ such that $f = \pi \circ i$, $X \in |2H(\mathcal{E}) + \pi^*(B)|$ for some $B \in \text{Pic}(C)$ and $L = H(\mathcal{E})|_X$. Let $e := \deg \mathcal{E}$ and $b := \deg B$. Then by [6, Theorem 3.1], we see that the following holds. Let (X, L) be a hyperquadric fibration over a smooth curve C with $\dim X = n \geq 3$, and let i be an integer with $0 \leq i \leq n$. Then

$$e_i(X, L) = (-1)^i (2e + (i+1)b) + \begin{cases} 2(i+1)(1-g(C)) & \text{if } i \text{ is odd,} \\ 2i(1-g(C)) & \text{if } i \text{ is even.} \end{cases}$$

Example 3.9 The case where (X, L) is a scroll over a smooth curve C.

Then by [4, Corollary 3.1 (3.1.1) and Corollary 3.3 (3.3.1)], we see that the following holds. Let \mathcal{E} be an ample vector bundle of rank n on C such that $X = \mathbb{P}_C(\mathcal{E})$ and $L = H(\mathcal{E})$.

$$e_i(X, L) = \begin{cases} i(2 - 2g(C)) & \text{if } i \ge 1, \\ \deg \mathcal{E} & \text{if } i = 0. \end{cases}$$

$$b_i(X, L) = \begin{cases} h^i(X, \mathbb{C}) & \text{if } i \ge 1, \\ \deg \mathcal{E} & \text{if } i = 0. \end{cases}$$

Example 3.10 The case where (X, L) is a scroll over a smooth surface S.

Let \mathcal{E} be an ample vector bundle of rank n-1 on S such that $X = \mathbb{P}_S(\mathcal{E})$ and $L = H(\mathcal{E})$. Then by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)], we see that the following holds.

$$e_i(X, L) = \begin{cases} (i-1)c_2(S) & \text{if } i \ge 3, \\ c_2(S) + c_2(\mathcal{E}) & \text{if } i = 2, \\ -(c_1(\mathcal{E}) + K_S)c_1(\mathcal{E}) & \text{if } i = 1, \\ s_2(\mathcal{E}) & \text{if } i = 0. \end{cases}$$

$$b_{i}(X, L) = \begin{cases} h^{i}(X, \mathbb{C}) & \text{if } m \geq i \geq 3, \\ h^{2}(X, \mathbb{C}) + c_{2}(\mathcal{E}) - 1 & \text{if } i = 2, \\ c_{1}(\mathcal{E})(c_{1}(\mathcal{E}) + K_{S}) + 2 & \text{if } i = 1, \\ s_{2}(\mathcal{E}) & \text{if } i = 0. \end{cases}$$

References

- [1] T. Fujita, On the structure of polarized manifolds with total deficiency one, III J. Math. Soc. Japan 36 (1984), 75–89.
- [2] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, (1990).
- [3] Y. Fukuma, On the sectional invariants of polarized manifolds, J. Pure Appl. Algebra 209 (2007), 99–117.
- [4] Y. Fukuma, Sectional invariants of scroll over a smooth projective variety, Rend. Sem. Mat. Univ. Padova 121 (2009), 93–119.
- [5] Y. Fukuma, Sectional class of ample line bundles on smooth projective varieties, in preparation.
- [6] Y. Fukuma, K. Nomakuchi and A. Uraki Sectional invariants of hyperquadric fibrations over a smooth projective curve, Tokyo J. Math. 33 (2010), 49-63.

- [7] W. Fulton, *Intersection Theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete 2 (1984), Springer-Verlag.
- [8] R. Lazarsfeld, *Positivity in Algebraic Geometry I, II* Ergebnisse der Mathematik, Springer-Verlag, 2004.

Department of Mathematics Faculty of Science Kochi University Akebono-cho, Kochi 780-8520 Japan E-mail: fukuma@kochi-u.ac.jp