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1 Introduction

In this note, we will calculate the ith sectional Euler number e;(X, L) and the ith sectional Betti
number b;(X, L) of some special polarized manifolds (X, L). We also note that results in this
note are useful for classifications of polarized manifolds (for example see [5]). At any time, we will
update this note if we complete calculations of sectional Euler numbers and sectiona Betti numbers
of new example!.

2 Preliminaties

Notation 2.1 Let (X, L) be a polarized manifold of dimension n. For every integers ¢ and j with
0<i<nand0<j <1, we put

J

Ci(X, L) Z (””l 1)cj_l(X)Ll,

=

Definition 2.1 ([3]) Let (X, L) be a polarized manifold of dimension n, and let ¢ and j be integers
with 0 < j < i < n.

(i) The i-th sectional Euler number e;(X, L) of (X, L) is defined by the following:

ei(X, L) := CiX,L)L"".

(ii) The i-th sectional Betti number b;(X, L) of (X, L) is defined by the following:
eo(X, L) if i =0,

bl L) =4 (L Zz 1)/R/(X,C) | if1<i<n.

7=0
Remark 2.1 (i) For every integers ¢ and j with 0 < j <i <mn, ¢;(X, L), b;(X, L) and w] I(X,L)
are integer (see [3]).

(ii) If ¢ = 0, then eo(X,L) = bo(X,L) = L™. If i = n, then e,(X,L) = e(X) and b,(X,L) =
r(X,C).

1If you find a mistake in this note, please let me know.



3 Calculations

Example 3.1 The case where (X, L) is (P", Opn(1)).

Then .
e;(P", Opn(l)) =e(P")=i+1
and .
n i 1, if ¢ is even,
b:(P", O (1)) = b(F) :{ 0, ifiis odd.
Example 3.2 The case where (X, L) is (Q", Ogn(1)).
Then
N if n is even,
on(Q") = { 0, if n is odd,
n )0, if n is even,
bn-1(Q") = { 1, if n is odd,
b (Q) = 1, if 7 is even with i <n — 2,
’ 10, if ¢ is odd with ¢ < n — 2,
Hence ;
n i i+ 2, if ¢ is even,
ei(@ 7OQ"(1)) = ei(@ ) = { i1 if 7 is odd
and

bi(Q", 0 (1)) = (~1) (a(@”,o@n(l)) - Qibﬂ@”)) -{5
§=0

Example 3.3 The case where (X, L) is (P4, Ops(2)).

if 4 is even,

if 7 is odd.

Set H = Opa(1). Then ¢;(P*) = 5H, co(P*) = 10H?, c3(P*) = 10H3, ¢y(P*) = 5H* = 5.

Hence

eo(P, O0ps(2)) =

€1 (P4, Oﬂm (2))

|
P,ﬂ
[
—
=
<

62(P470P4(2)) =

1=0
3
l
es(P*, Ops(2)) = Z(—l)l l) e (X)(2H) =4,
1=0
ea(P) = e(P =5
On the other hand, since
A B if 7 is even,
bi(P) = { 0, if 4 is odd,
we have
bO(IP47 OHM (2)) = 167
by (]P)47 O]P’4 (2)) = 10,
ba(P*, Opa(2)) = 6,
b3(P47 Ops (2)) = ’
by(P*, O0ps(2)) = 1.



Example 3.4 The case where (X, L) is (Q3, Ogs(2)).
Set H = Oga(1). Then ¢;(Q?) = 3H, c2(Q%) = 10H?, c5(Q%) = 2H? = 4.
Hence

e0(Q%,0g3(2)) = (2H)? =16,

(@, 0p(2)) = Y (1)

e2(Q%, 0gs(2))

I
Fj
|
[t
~—
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e3(Q%, 0g3(2)) = e(Q’) =

On the other hand, since

@ ={ 0 e
we have
bo(Q%,0gs(2)) = 16,
b1(Q%, 0gs(2)) = 10,
b2(Q%, 0gs(2)) = 6,
b3(Q%, Ogs (2)) 0.

Example 3.5 The case where (X, L) is (P, Ops(3)).
Set H = Ops(1). Then ¢ (P?) = 4H, ¢5(P?) = 6H?, c3(P?) = 4H5.
Hence

eo(P3, 0ps(3)) = (3H)® =21,

a®.0:3) = Y0 (1 anopm =15,

=0 !
e2(P%, 0ps(3)) = Y (=)' s (X)(3H)' T =9,
es(P?,0ps(3)) = e(P?) =4.

On the other hand, since
if 4 is even,

1
. 3\ _ )
b:(F7) = { 0, ifiisodd,

we have
bO (P3a O[PB (3)) = 167
bi(P?,0ps(3)) = 10,
bo(P3, Ops(3)) = 6,
b3 (]P)Sa O[PS (3)) -

Example 3.6 The case where (X,L) is a Veronese fibration over a smooth curve C (see [2,
(13.10)]).

Then there exists a vector bundle £ of rank three on C such that X = P(€) and L = 2H(E) +
f*(B), where f: X — C is its fibration and B € Pic(C). Set e := deg & and b := deg B. First we



calculate e; (X, L). Here we note that 2g(C)—2+e+2b = 0, L? = 8e+12b and g1 (X, L) = 1+2e+2b.

Then
eo(X,L) = L3 =8¢+ 12b,e1(X,L) = 2 — 2¢: (X, L) = —4e — 4b.

Next we calculate es(X, L). Since
) = 33 (3 . ’,i) en(*(EN)HEY e 4" (To)
= 3ai(f*(Te)H(E) + 3H(E)* +2e1(f*(EV))H(E),
we have

2
) = YU () ancoen + )
=0
= 20e + 27b.

Next we calculate e3(X, L). We note that e3(X, L) = e(X). Since

bO(X = 1
hi(X) = 29(0),
bo(X) = 2,

we have e3(X,L) = e(X) =6 — 69(C) = 3e + 6b.
Furthermore we calculate b;(X, L). Then

bo(X,L) = S8e-+12e,
bi(X,L) = 2(1+ 2+ 2b),
by(X,L) = 19e+ 25b,
b3(X,L) = 2—e—2b.

Example 3.7 The case where (X, L) is a Del Pezzo manifold.

Here we note that by [2, (8.11) Theorem]|, we have L™ < 8 and (X, L) is one of the following:

(3.7.1) (X, L) = (P3, Ops(2)).
First we calculate e;(X, L). Since

(X, L) = i:( 1)l<n_i_l|_l_1>ci_l(X)Ln—i+l
l=p '
B

we have
i - ()
ax = (e (-
s = (0ol o)
axn) = (Cor(3) ()20 () (5)2 + cv2(y) ()2 + u¥(



Next we calculate b;(X, L). Since

o -{ o HIVE
we have
bO(X»L) = eO(XvL):&
bi(X,L) = —e(X,L)+2b(X)=2,
bo(X,L) = ea(X,L)—2(bo(X) — b (X)) = 2,
b3(X,L) —63(X,L)+2(b0(X)—bl(X)+b2(X)):0

(3.7.2) X is the blowing up of P? at a point and L = 7*(Ops(2)) — E, where 7 : X — P3 is its
birational morphism and F is the exceptional divisor. Then by [3, Theorem 3.2] and (3.7.1)
above, we have

eo(X,L) = T,
el(Xa L) = 0,
BQ(X, L) = 5,
63(X7 L) = 6.
and
bo(X,L) = 7,
bl(X7 L) = 27
bo(X,L) = 3,
b3(X,L) = 0.

(3.7.3) (X, L) is either
(P! x P! x PY @ pfOpi (1)), (P? x P, @7_1p; Op2(1)) or (Ppz(Tp2), H(Tp2))
where p; is the ith projection and Tp2 is the tangent bundle of P2.

(3.7.3.1) The case where (X, L) = (P! x P! x P!, ®3_;p:Opi(1)).
Since Tx = ®3_,p;(Tp1), we have

3
a(Tx) = Y _pja(Tm)
=1

3
= Zp}fq(oz@l(?)),
eo(Tx) = preu(Te)pacr(Te) + preu(Zen)psen(Ter) + paca(Tp)pzen (Te)
= P1c1(Or(2))p2¢1(Op1 (2)) + pre1(Op (2))p3e1(Opi (2)) + poci (O (2))p31(Opi (2))
C3(X) = e(X)

On the other hand
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Therefore

G:
=
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=
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2

ea(X,L) = (-1) ﬁ) co (X)L =6,
1=0
e3(X, L) = e(X) =38,
and
bo(X,L) = eo(X,L)=6,
bi(X,L) = —ei1(X,L)+2b(X)=2,
ba(X,L) = ea(X, L) —2(bo(X) — b1(X)) =4,
b3(X,L) = —e3(X,L)+2(bo(X)—b1(X)+b(X)) =0.
(3.7.3.2) The case where (X, L) = (P? x P2, @2, p;Opz(1)).

Since Tx = ®5_,p;(Tp2), we have

2
a(Tx) = > pja(Te)
j=1

2
= ) pjca(0p(3)),
j=1
c2(Tx) = pica(Tp2) + prei(Tee)pyer(Tez) + paca(Tp2)
= 3piOp2(1)* + 9pj Op2 (1)p3Op2 (1) + 3p3Op2 (1),
c3(Tx) = pica(Tp2)psei(Tpz) + piei(Tp2 )psca(Tp2)
= 9p;Op2(1)*p3Op2(1) 4 9p} Op2 (1)p3Op2 (1),
(X)) = e(X).
On the other hand
bo(X) = 1,
h(X) = 2¢(X)=0,
bo(X) = 2b5(P?)bo(P?) + by (P?)by (P?) = 2,
b3(X) = 2b3(P?)bo(P?) + 205 (P?)by (P?) = 0,
by(X) 204 (P?)bo (P?) + 2b3(P?)by (P?) + by (P?)by(P?) = 3.
Therefore
eo(X,L) = L*=6,
x.0) = St X)L =0
axn = S0 (P o=
X,L) = 3 —1)! L+ X)Lt =¢
) = S (] ecort e
5 l
es(X,L) = ;uy(l)cs_l(X)LHlﬁ,
ea(X, L) = e(X)=09,



and

bo(X,L) = eo(X,L)=6,

hi(X,L) = —e1(X,L)+2b(X) =2,

bo(X,L) = ea(X,L)—2(bo(X) — b1 (X)) =4,

b3(X,L) = —e3(X,L)+2(bp(X)—b1(X)+by(X)) =0,
ba(X,L) = es(X,L) = 2(bo(X) — b1 (X) + b2(X) — b3(X)) = 3.

(3.7.3.3) The case where (X, L) = (Pp2(Tp2), H(Tp2)).
First we note that

S— N N
1
o N o

Then by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)] we have

eo(X, L) s2(Tp2) = Kg» — c2(P?) =
er(X,L) = —(ci(Zp2) + Kp2)c1(Tp 2)
62(X7L) = CQ(]P )+CQ(7EP>2) 6,
e3(X,L) = 2¢(P?) =

and
bO(Xv L) eO(Xa L) =6,
bi(X,L) = (c1(Tp2) + Kp2)er(Tp2) +2 =2,
bo(X,L) = ba(X)+c2(P?) —1=4,
b3(X,L) = bs(X)=0.

(3.7.4) The case where (X, L) is a linear section of the Grassmann variety Gr(5,2) parametrizing
lines in P*, embedded in P? via the Pliicker embedding. Then L" = 5.

Remark 3.1 Here we review the Chern class of Gr(p, q) parametrizing P4=1 in PP~1 (see [7,
Chapter 14, 14.7]).

(i) Let S (resp. Q) be the universal subbundle (resp. the universal quotient bundle) of
Gr(p, q). Then

c(Gr(p,q)) = (S ® Q). (1)
We note that rankS = ¢ and rank@ = p — ¢. From (1),
Ch(TGr(p,q)) = ch(SY)ch(Q) (2)

holds. Since ch(Q) + ch(S) = p, we have

ch(S) = a3 chi(Q).

k>1

On the other hand
chi(8Y) = q =Y (~1)*chi(Q). (3)

k>1



(ii) Let Ag € A1 € ... C A,—1 C PP~ ! be a flag of subspaces with a; = dim 4;, and let
QAo,...,Ag-1) ={L € Gr(p,q) | dim(LNA4;) >4,0 <i<d}.

Then Q(Ao, ..., Aq—1) is a subvariety of dimension Z?:_Ol (a; — i), which is called a Schubert
variety. Then we set (ag,...,aq-1) = [Q(Ao,..., Aq-1)].
(iii) Next we explain the Schubert caliculas. For A = (Ao, ..., Ag—1) withp—g>Xo > ... >
Ag—1 = 0, we set

{Xo, - Aga} = det(en,+5-i(@))o<ij<q-1-

Then ¢, (Q) = {m,0,...,0}. We note that the following equality holds.

(M} em(@) =D {u}, (4)
where the sum over p with p —q > po > Ao > -+ > pg—1 > A1 and Z?;()l A = —m+
Zg;ol -

Moreover we have
k!
c1(Q)k{)\o,...,)\ 1} 01(Q)k(a0,...,a )=—Ta; —a). (5)
/Grr(p,q) a Gr(p.0) q al - ag_1! g j

Here a; = p—q+i—\i, k = 2%, a; — U509 = dim Gr(p, q) — 0 N = a(p—q) — 2025 M-

Now we consider the case where p = 5 and ¢ = 2. Then first we calculate ¢;(Gr(5,2)) for
1 <j < 5. From (2) and (3), we have

ch(Gr(5,2)) = ch(SY)ch(Q)

= (2 - Z(—l)kchk(Q)) (3 +° Chk(Q)) :

k>1 E>1

Using this, we get the following. (Here we note that ¢;(Q) = 0 for j > 4 because rank@ = 3.)

(Gr(5,2)) = 5a(Q)
2(Gr(5,2)) = 12¢1(Q)* — c2(Q)
3(Gr(5,2)) = 20c1(Q)° —10c1(Q)c2(Q) + 5es(Q)
(Gr(5,2)) = 28c1(Q)* —38¢1(Q)*c2(Q) +20c1(Q)c3(Q) + Tea(Q)?
(Gr(5,2)) = 36¢1(Q)° — 90c1(Q)%c2(Q) + 40¢1(Q)*c3(Q) + 45¢1(Q)c2(Q)* — 10¢2(Q)e3(Q).

C1

Cs

Next we use the Scubert caliculas. First from (5) we get the following.

C1 (Q)G = 9,
a(@Q)e2(Q) = 3,
a(@)’es(Q) = 1

Next we calculate ca(Q)?c1(Q)?. Since {2,0} - {2,0} = {3,1} + {2,2}, we have

[y #@a@ = [ a@u+ [ @

_ 2 2
= o Q03 /Gr(5,2) 1 (QP(1,2)

|
o



Next we calculate c2(Q)es(Q)c1(Q). Since {2,0} - {3,0} = {3,2}, we have

fopey @ @a@a@ = [ @@= [ @02

= 1.
Hence
c1(Gr(5,2))L° = 5c1(Q)° =
eo(Gr(5,2))L* = 12¢1(Q)° - (Q)4c (@) =
c3(Gr(5,2) L = 20c1(Q)° — 10c1(Q) e (Q) +5c1( Ve3(Q) =75
ca(Cr(5,2) L% = 28¢1(Q)° — 38¢1(Q)*c2(Q) + 20¢1(Q)3¢c3(Q) + Te1(Q)?e2(Q)? = 60
c5(Gr(5,2))L = 36c1(Q)° —90c1(Q)*c2(Q) + 40c1(Q)*e3(Q)
+45¢1(Q)%c2(Q)? — 10¢1(Q)ea(Q)e3(Q) = 30
Therefore
eo(X,L) = L°=5,
e1(X,L) = e (X)L° -5L5 =0,
ea(X,L) = co(X)L* —4e(X)LP +10L° =7,
e3(X,L) = e3(X)L? —3ca(X)L* 4 6c1(X)L° — 10L° = 4,
ea(X, L) = ca(X)L? = 2c3(X) L3 + 3co(X)L* — 4y (X)L +5L° = 6,
es(X,L) = c5(X)L — ca(X)L? 4 c3(X)L3 — co(X)L* + 1 (X)L° — L° =8,
es(X, L) = e(X)=10.

Next we calculate b;(X,L). Since bo(X) = ba(X) = 1, by(X) = bg(X) = bg(X) = 2
b1o(X) = b12(X) = 1 and b;(X) = 0 for every positive odd integer j, we have

X, L) =

3

N A R

— — — ~— ~— —
I

(3.7.5) The case where (X, L) is a complete intersection of two hyperquadrics in P*"*2. Then L™ = 4.
First we calculate e(X) in this case. In general we can prove the following.

Lemma 3.1 Let (X, L) be a complete intersection of two hypersurfaces of degree s and t in
P2, Then

=== S () B S (Y Tt (,15 ) e
= =0

Proof. Let ¢; :=¢;(X) and H := Ox(1). Then the following holds (see [7, Example 3.2.12]).

(1+ H)"3 = O(X)(1 + sH)(1 + tH).



Here C(X)=(14+c¢1+ -+ ¢,). Hence

(cn + scn_1H) + t(cp—1H + scn,gHQ) = <n * 3> H"
n
(Cn—1 + scn—oH) + t(ch—oH + SCn_gHQ) = <n + i)) H* !
n—
3
(co + scrH) + t(ci H 4 scoH?) = <n—2|— >H2

Hence

cp +scn1H + (—t)"_2 . t(clH"_1 + scoH™)

e R e Y e I

Moreover since ci H" ™t = O(n—s—t+3)H" !, we have c; H" ' + scoH" = (n —t + 3)H™.
Therefore

Ccn + scp_1H

()0

Cor= (") o () s o (M) o)
()
(
(

s
12

e ("3 e () s o (U0 o)

(L=t —1- (=) (Z i 3) a (Z i i)))

((1—t)"+3—1+t(213> —t2<21§>)

By the same argument as above for every j with 1 < j <n — 1 we have

T @

| @

Can_j + SCj_lHn_j+1

S " e n 3
= e (“” s “>k<n+§—k>>'

k=0
Hence
=21 S (5) + ;Zl @) 22%(—75)’“(”1;3 k) + (=)™ (=), (6)
k=0 j=0 k=0

O
Lemma 3.2 Let (X, L) be a complete intersection of two hyperquadrics in P2, Then
| 2n+4, if n is even,
e(X) = { 0, if n is odd.

10



Proof. By Lemma 3.1 we have
1 n 20 n+3
= —9 n+2 - —1)" —9 k
en = (=2)" 45 | n(=1) +,Z ( )(n+3—k>

Next we prove the following.

Claim 3.1
n n+2— J
1 n+3
(_2)n+2 4z n + k< ) (7)
2 = = n+3—k
|0, n s odd,
] 2n+4, n s even.

Proof. First we note the following.

Sy () 15)) ©

j=1 k=0

- inij(‘”k(n RSPED DRl

j=1 k=0 j=1 k=1
n n+l—j
D3PI e
= = n+2—-k
n—1ln+1—j
_ Z ( 2)k+1< Tl+2 >
j=1 k=0 n+2-k

Then from (8) and (9) we have

e (2 (250)



=- ni:l ngj(—Z)’“ (n Z;z k) - i(Q)k (n Z;E k) + 2(72)7%27]‘ (” ;f 2)

j=1 k=0 k=0 1
n—1n+l—j
n -+ 2
- Z Z (-2)’“(71+ o k) +4n 46+ (=1)"2 — (=2)"F2 (10)
j=1 k=0

Here we prove (7) by induction on n.
If n =1 and 2, then (7) holds.

Next we assume that (7) holds for n — 1 is odd. Then by assumption we have the following
equality.

n—1n+l—j
(—2)"+ 4 % (n—1D"" >0 > (=2)F (n Z;E k) = 0. (11)
j=1 k=0

Then by using (11), we have

" 1 . e e n+3
SR LD O D ROy

n—1n+l—j
= (—2)"** +% (n— SN (2)’“( e ) +4n+ 64 (—=1)"T? — (=2)"*?

ol n+2—%k
n—1n+l—j
1 n+2
— (-2 n+2 - _ -2 k 4 1—(-2 n+2
CEREE] UE D DECTT (RS ERURE REBRCE)
j=1 k=0
1
= (=2 + S (5n+7+2(-2)" (n = 1)(-1)"7)
=2n+4.

Next we assume that (7) holds for n — 1 is even. Then by assumption we have the following
equality.

N 1 - n—1n+l—j 2
(—2) +1+5 (n—1)(-1) +j§::1 kz—o(_2)k<”+2‘k> = 242 (12

Then by using (12), we have

n+2 1 n n n+3
SR RS D DRCIH (e

j=1 k=0

1 R n+2
= (=2 n+2 - o _2k 4 -1 n+2 ) n+2
ey (X (052, ) e (o - (-2)

12



1 < n+ 2
= (=2)"2 4 = — —2)F —(=2)"F
g (mes- 3 3 (1) -
1
= (=2)"*2 4+ 5 (Bn+5+2(=2)"" + (n—1)(-1)""" —2(2n+2) — (-2)"*?)
=0.
This completes the proof of Claim 3.1. O
From Claim 3.1 we get Lemma 3.2. O

Remark 3.2 Let (X, L) be a complete intersection of two hypersurfaces of degree s and ¢
in P"*2. Then from (6) we can write e(X) as follows.



(3.7.6)

(B o (2 e e ()

= (—1)"st Zn:(—l)k<n—l:3> n_:s"’“jtj

k=0 j

<

So we get the assertion. O

Here we go back to the case (3.7.5). In this case, there exists a smooth ladder X D X; D
-++ D X,,—1 of L such that (X;, L;) is complete intersection of two hyperquadrics in P"~7+2,
Since e;(X, L) = e(X,,—i), we see that

] 2044, if 7 is even with 7 > 2,
ei(X’L){ 0, if 4 is odd with i > 3.

We also note that

4, ifi=0,
ei(X’L):{ 0, ifi=1

Next we calculate b;(X, L). Since

1, if 7 is even with ¢ <mn — 1,
bi(X) = { 0, ifiisodd withi<n—1,

we have )
2i+4-25 =i+4, if ¢ is even with 7 > 2,

bi(X,L) = .
(X L) {0+2’+21=¢+1, if i is odd with i > 3.

We also note that
4, if 1 =0,

b”(X’L):{ 2, ifi=1.

)

The case where X is a hypercubic in P! and L = Ox(1).

Here we consider more general case than this. In general we can prove the following claim.

Lemma 3.3 Let (X, L) be a polarized manifold of dimension n such that X is a hypersurface
of degree m and L = Ox(1). Then

1

bi(X,L) = L1 =m)™2 -1+ m(i+2) -1, if i is even with i <n —1,
STl R em) =1 m(i+2) +it 1, ifiis odd with i <n— 1.

Proof. First we calculate e, (X, L). Let ¢; := ¢;(X) and H := Ox(1). Then the following
holds (see [7, Example 3.2.12]).

(1+H)7l+2 — (1+01++cn)(1+mH)

14



(3.7.7)

Hence

cn+mep_1H = <n+2)H"
n
2
Cho1 +men_oH = ( + )H"‘l
n—1
cp+mH = (n—li_2>H
So we have
1 n+2 afmn+2 n+2
. — o an - o 2 _ 3 _ n+1 Hn
Cn (—m) +m2<( m)<2)+(m)<3>+ + (—m) <n+1>)
1 n+2
_ n+2 n+2
= m(—m)”—&—m2<(1—m) —1—(—m)( . )—(—m) )m
1

= —(Q1-m)""?—1+m(n+2).
m
On the other hand, in this case, there exists a smooth ladder X D X; D --- D X,,_1 of L
such that (Xj, L;) is a hypersurface of degree m in P"~9+1. Since €;(X, L) = e(X,,—;), by
the above argument we see that

(X, L)=—(1-m)"-1+m(i+2).

3=

Next we calculate b;(X, L). Since

1, if ¢ is even with i <n — 1,
bi(X) = { 0, ifiisoddwithi<mn—1,
we have
bi(X.L) — = (=m)*2—14+m(i+2)-2-%, if i is even with i <n —1,
Tl =L (A -m) =1+ m(i+2) +2- HE, ifiis odd with i <n— 1.
B L1 =m)™? —1+m(i+2) —1, if 7 is even with i <n —1,
- - L@ =-m)y"?—1+m(i+2)+i+1, ifiisoddwithi<n-—1.
This completes the proof of Lemma 3.3. O

The case where X is a double covering of P™ branched along a smooth hypersurface of degree
4, and L is the pull-back of Opr(1). Here we consider more general case than this.

Lemma 3.4 Let X be a double covering of P™ branched along a smooth hypersurface of
degree m with even m > 4, and L is the pull-back of Opn(1). Then

ei(X,L) = z'—|—2_l(m_1_,_(1_m)i+1)7
m

. 1 ; ; i if 1 18 even
. o L o o i+1 _1)i+1 ’
bi(X, L) = (z+2 —(m—1+(1-m) )> +(=1) { i+1  ifi s odd.
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(3.7.8)

Proof. First we calculate e, (X, L). Let B be the branch locus. Then
e(X) = 2e(P") — e(B).

Hence by Lemma 3.3

en(X, L) = e(X)
20(P") — e(B)
= 2n+2—%((l—m)wrl—i—m(n—kl)—l)
= n+2—%(m—1—|—(1—m)"+1).

Next we consider e;(X, L). First we note that A(X, L) = 1 in this case. Since Bs|L| = (),
there exists a smooth ladder X D X; D --- D X,,_1 of L. Then we see that A(X;,L;) =1
and L?fj = 2, where L; := L|x, because g(X,L) =m/2—-1>1=A(X,L) and L" =2 =
2A(X,L). Hence X; is a double covering of P"~J branched along a smooth hypersurface
of degree 4, and L; is the pull-back of Opn—;(1). Since e;(X,L) = e(X,—;), by the above
argument we see that for every integer ¢ with ¢ > 1, we have

ei(X,L) = i+2—%(m71+(17m)”1). (13)

Here we note that eg(X,L) = L™ =2 =0+2 — 1(3+ (=3)°"1). Hence (13) also holds for
1=0.
Next we calculate b;(X, L). By the Barth-type theorem (see e.g. [8, Theorem 7.1.15]), we

have
1 if ¢ is even with i <n — 1,

bi(X) :{ 0, ifiisodd withi<n—1.

Hence we have

i—1
b6 L) = (1) [ex,0) =23 (—1)b,(X)
j=0
o i . 1 i+1 i i7;+1 if ¢ is even,
= D <Z+2_m<m_1+(1_m) )_2(_1)' L1 s odd,
1 ; ; i if 4 is even
_ . = _ _ i+1 _1)\i+1 )
- (’” mm-1+d=-m ))+( Y {z‘+1 if i is odd.
We get the assertion of Lemma 3.4. O

The case where (X, L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3,2,1,...,1). Then L™ =1 and Bs|L| = {p} (see [1, (16.7) Theorem and Appendix 1]).

In this case, there exists a smooth ladder X D X; D --- D X,,_1 of L such that (X, L;) is
a weighted hypersurface of degree 6 in the weighted projective space P(3,2,1,...,1). Since
ei(X,L) =e(Xp—;), in order to calculate e;(X, L) for ¢ > 1, it suffices to calculate e(X).

Let 7 : X* — X be the blowing up at p € X. Then n*(L) — E is base point free and let
f: X* — P"! be the morphism defined by |7*(L)— E|. In this case, there exists a projective
bundle p : V — P"~! and a double covering p : X* — V such that f = po p. Here we note
that V = Ppr—1(Opn-1(2) @ Opn-1). Let Hy be the tautological line bundle of V and let B

16



be the branch locus of p. Then there exist By € |Hy — 27*Opn-1(1)| and Bs € |3Hy| such
that By 2 P! and B = By + By. Here we note that the following equality holds.

e(X) = e(X*)—e(E)+1, (14)
e(X*) = 2e(V)—e(B), (15)
e(B) = e(B1)+e(B2). (16)

Therefore in order to calculate e(X), we need the value of e(E), e(B1), e(B2), and e(V).

First we note that
e(E)=e(P" ) =n (17)

and
e(By) = e(P"1) = n. (18)

Next we calculate e(V'). By [1, Proof of Lemma in Appendix 2|, we see that there exist the
following three exact sequence:

0— 2HV - 271-*0]1377,71 (1) — Tv — ,T]Pm—l |V — 0, (19)
0— Oy — H'(P" 1 Opn1(1))Y @ 7 (Opn-1(1)) — Tpn-1|y — 0, (20)
O*>’TB2 —>T\/|B2 — (3Hv)‘32 — 0. (21)
From (19), we have
C(T\/) = C(2HV - 27'['*0]?71—1(1))0(771)%71 |V) (22)
Hence
Cn(V) = (QHV - 27T*OP7171(1))Cn_1(7fpm71 |V)

= (2Hy — 27" Opaer (1)) (n(m* Opur (1))"71).

By (20), we get

(1 Opn 1 (1))7) = e(Ov Jel(n* Ton). (23)
Hence
et T = ()" )7 Omna ()
Therefore
cn(V) = (2Hy — 27" Opn—1(1))(n(7* Opn-1(1))" 1) (24)
= 2nHv7T*O]pn71(1))n71
2n.

Next we calculate e(Bs). Before this, we note the following. Let £ := Opn-1(2) ® Opn-1 and
let H(E) be the tautological line bundle of Ppn-1(E). Then V = Ppn-1(€) and H(E) = Hy.
In this case, since ¢;(€) = 0 for any j > 2, we have s;(€) = Opn-1(2)7. Therefore

H,m* Opn 1 (1) = Opn1(1)" 551 (E) = 277, (25)

From (21), we have
(T |p,) = c(Tp,)c(3Hv |,)- (26)

17



From (26) we obtain the following:

Cn—1(B2) + ¢n—2(B2)(3Hv|B,) = cn-1(V)Bs
cn—2(B2) + ¢n—3(B2)(3Hv |B,) = c¢n—2(V)Bs
01(32) +3Hv|32 = Cl(V)Bg
Therefore
Cnfl(Bg) = 3(Cn,1(V)HV + (—3)Cn,2(V)H‘2/
o (=3)" 2 (V)H T 4 (=3) T H™). (27)
On the other hand, by (22) we have
Cj(V) = (2HV —27T*O[p>n—1(1))6j,1(7]'pm—1|V) +Cj(7]'pm—1|v)

Y () R

Hence by using (25) we get

¢;(VYHT = 2<j " I)Hw“w*opn_l(l)j—l + ((") - 2( " )) H 7 O (1)

J Jj—1

Therefore
n—1 ) ] n—1 . n n—1 ) n
Z(—B)”ﬂflcj(V)H{}_j =2 (—6)’17]71 ( . 1) + Z(—ﬁ)”Jl( ) (28)
Jj=1 Jj=1 J Jj=1 J

[N}
3
(7]
—
—
|
(=)
S—
3
d,
L
N\
<.
I3
—
~
|
>—l‘._;
oo
il
—
—
\
()
=
3
d
+
—
N\
<
(]
—
~_

<
Il
-

.
Il
—

(1+(=6))" = (=6)n—1)

and

3
UL
N
=2
3
|
<.
|
—
N
S 3
'
I
|
. 3
(7]
—
N
2
3
|
o
VR
S 3
N~

.
Il



Since H = 2"~1 from (27) we get

cn—1(B2) (29)
=3 (118((_5)n + 6n — 1) + é((_6)n _ (_5)n + 1) 4 (_3>n—12n—1>
_ _%(_5)71, n 3n;— 1.
From (18) and (29), we have
e(B) =e(B1) +e(B2) =2n+ ﬂ (30)
By (24) and (30) we get
e(X*)=2e(V)—e(B)=2n+ (_5)# (31)
Therefore by (17) and (31)
e(X)=e(X")—e(E)+1=n+ (_5);+2 (32)
So we see that .
ei(X,L) =i+ (_5)% (33)

for every integer ¢ with 1 < i < n. Here we note that this equality holds for the case where
i=0.
Next we calculate b;(X, L). Since we see from [1, (16.6) 4)] that

bi(X) = 1, if j is even with j <n —1,
/ 10, if jis odd with j <n —1,

we have
1—1
bi(X,L) = (1) |e(X,L)—2) (~1)b;(X)
§=0
_ i, (=5 +2 i %, if 7 is even,
= b (Z+3 2D B L s odd,

B (—1) (75)i+2, if ¢ is even,
)i if 4 is odd.

Example 3.8 The case where (X, L) is a hyperquadric fibration over a smooth curve C. Let
f:+ X — C be its morphism. We put £ := f,(L). Then £ is a locally free sheaf of rank n + 1
on C. Let 7 : Po(€) — C be the projection. Then there exists an embedding ¢ : X — P (€)
such that f =7woi, X € |2H(E) + 7n*(B)| for some B € Pic(C) and L = H(E)|x. Let e := deg &
and b := deg B. Then by [6, Theorem 3.1], we see that the following holds. Let (X,L) be a
hyperquadric fibration over a smooth curve C' with dim X = n > 3, and let 7 be an integer with
0 <4 <n. Then

2+ 1)(1 — g(C)) ifiis odd,

ei(X,L) = (—1)"(2e + (i + 1)b) + { 2i(1 — g(C)) if 7 is even.
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Example 3.9 The case where (X, L) is a scroll over a smooth curve C.
Then by [4, Corollary 3.1 (3.1.1) and Corollary 3.3 (3.3.1)], we see that the following holds. Let £
be an ample vector bundle of rank n on C' such that X =P (€) and L = H(E).

‘ [ i2-29(0)) ifi>1,
e(X, L) _{ deg € if i = 0.

[ R(X,C) ifi>1,
bi(X’L){ deg & if i = 0.

Example 3.10 The case where (X, L) is a scroll over a smooth surface S.
Let £ be an ample vector bundle of rank n — 1 on S such that X = Pg(€) and L = H(E). Then
by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)], we see that the following holds.

(i —1)ea(S) ifi>3,
' ) ca(S)+ca(€) ifi=2,
L) =3 e (€) + Ks)er(€) ifi=1,
$2(€) if i =0.
hi(X,C) ifm>i>3,
R(X,C) +ca(€) =1 ifi=2,
BGL) =N el (€) (e (€) + Ks) +2 ifi—1.
$2(€) if i = 0.
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