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1 Introduction

In this note, we will calculate the ith sectional Euler number e;(X, L) and the ith sectional Betti
number b;(X, L) of some special polarized manifolds (X, L). We also note that results in this
note are useful for classifications of polarized manifolds (for example see [5]). At any time, we will
update this note if we complete calculations of sectional Euler numbers and sectiona Betti numbers
of new example!.

2 Preliminaties

Notation 2.1 Let (X, L) be a polarized manifold of dimension n. For every integers ¢ and j with
0<i<nand0<j <1, we put

J

Ci(X, L) Z (””l 1)cj_l(X)Ll,

=

Definition 2.1 ([3]) Let (X, L) be a polarized manifold of dimension n, and let ¢ and j be integers
with 0 < j < i < n.

(i) The i-th sectional Euler number e;(X, L) of (X, L) is defined by the following:

ei(X, L) := CiX,L)L"".

(ii) The i-th sectional Betti number b;(X, L) of (X, L) is defined by the following:
eo(X, L) if i =0,

bl L) =4 (L Zz 1)/R/(X,C) | if1<i<n.

7=0
Remark 2.1 (i) For every integers ¢ and j with 0 < j <i <mn, ¢;(X, L), b;(X, L) and w] I(X,L)
are integer (see [3]).

(ii) If ¢ = 0, then eo(X,L) = bo(X,L) = L™. If i = n, then e,(X,L) = e(X) and b,(X,L) =
r(X,C).

1If you find a mistake in this note, please let me know.



3 Calculations

Example 3.1 The case where (X, L) is (P", Opn(1)).

Then .
e;(P", Opn(l)) =e(P")=i+1
and .
n i 1, if ¢ is even,
b:(P", O (1)) = b(F) :{ 0, ifiis odd.
Example 3.2 The case where (X, L) is (Q", Ogn(1)).
Then
N if n is even,
on(Q") = { 0, if n is odd,
n )0, if n is even,
bn-1(Q") = { 1, if n is odd,
b (Q) = 1, if 7 is even with i <n — 2,
’ 10, if ¢ is odd with ¢ < n — 2,
Hence ;
n i i+ 2, if ¢ is even,
ei(@ 7OQ"(1)) = ei(@ ) = { i1 if 7 is odd
and

bi(Q", 0 (1)) = (~1) (a(@”,o@n(l)) - Qibﬂ@”)) -{5
§=0

Example 3.3 The case where (X, L) is (P4, Ops(2)).

if 4 is even,

if 7 is odd.

Set H = Opa(1). Then ¢;(P*) = 5H, co(P*) = 10H?, c3(P*) = 10H3, ¢y(P*) = 5H* = 5.

Hence

eo(P, O0ps(2)) =

€1 (P4, Oﬂm (2))

|
P,ﬂ
[
—
=
<

62(P470P4(2)) =

1=0
3
l
es(P*, Ops(2)) = Z(—l)l l) e (X)(2H) =4,
1=0
ea(P) = e(P =5
On the other hand, since
A B if 7 is even,
bi(P) = { 0, if 4 is odd,
we have
bO(IP47 OHM (2)) = 167
by (]P)47 O]P’4 (2)) = 10,
ba(P*, Opa(2)) = 6,
b3(P47 Ops (2)) = ’
by(P*, O0ps(2)) = 1.



Example 3.4 The case where (X, L) is (Q3, Ogs(2)).
Set H = Oga(1). Then ¢;(Q?) = 3H, c2(Q%) = 10H?, c5(Q%) = 2H? = 4.
Hence

e0(Q%,0g3(2)) = (2H)? =16,

(@, 0p(2)) = Y (1)

e2(Q%, 0gs(2))

I
Fj
|
[t
~—

~

e3(Q%, 0g3(2)) = e(Q’) =

On the other hand, since

@ ={ 0 e
we have
bo(Q%,0gs(2)) = 16,
b1(Q%, 0gs(2)) = 10,
b2(Q%, 0gs(2)) = 6,
b3(Q%, Ogs (2)) 0.

Example 3.5 The case where (X, L) is (P, Ops(3)).
Set H = Ops(1). Then ¢ (P?) = 4H, ¢5(P?) = 6H?, c3(P?) = 4H5.
Hence

eo(P3, 0ps(3)) = (3H)® =21,

a®.0:3) = Y0 (1 anopm =15,

=0 !
e2(P%, 0ps(3)) = Y (=)' s (X)(3H)' T =9,
es(P?,0ps(3)) = e(P?) =4.

On the other hand, since
if 4 is even,

1
. 3\ _ )
b:(F7) = { 0, ifiisodd,

we have
bO (P3a O[PB (3)) = 167
bi(P?,0ps(3)) = 10,
bo(P3, Ops(3)) = 6,
b3 (]P)Sa O[PS (3)) -

Example 3.6 The case where (X,L) is a Veronese fibration over a smooth curve C (see [2,
(13.10)]).

Then there exists a vector bundle £ of rank three on C such that X = P(€) and L = 2H(E) +
f*(B), where f: X — C is its fibration and B € Pic(C). Set e := deg & and b := deg B. First we



calculate e; (X, L). Here we note that 2g(C)—2+e+2b = 0, L? = 8e+12b and g1 (X, L) = 1+2e+2b.

Then
eo(X,L) = L3 =8¢+ 12b,e1(X,L) = 2 — 2¢: (X, L) = —4e — 4b.

Next we calculate es(X, L). Since
) = 33 (3 . ’,i) en(*(EN)HEY e 4" (To)
= 3ai(f*(Te)H(E) + 3H(E)* +2e1(f*(EV))H(E),
we have

2
) = YU () ancoen + )
=0
= 20e + 27b.

Next we calculate e3(X, L). We note that e3(X, L) = e(X). Since

bO(X = 1
hi(X) = 29(0),
bo(X) = 2,

we have e3(X,L) = e(X) =6 — 69(C) = 3e + 6b.
Furthermore we calculate b;(X, L). Then

bo(X,L) = S8e-+12e,
bi(X,L) = 2(1+ 2+ 2b),
by(X,L) = 19e+ 25b,
b3(X,L) = 2—e—2b.

Example 3.7 The case where (X, L) is a Del Pezzo manifold.

Here we note that by [2, (8.11) Theorem]|, we have L™ < 8 and (X, L) is one of the following:

(3.7.1) (X, L) = (P3, Ops(2)).
First we calculate e;(X, L). Since

(X, L) = i:( 1)l<n_i_l|_l_1>ci_l(X)Ln—i+l
l=p '
B

we have
i - ()
ax = (e (-
s = (0ol o)
axn) = (Cor(3) ()20 () (5)2 + cv2(y) ()2 + u¥(



Next we calculate b;(X, L). Since

we have

—_

_J L ifj=02
J’(X’C)_{o, if j=1,3,

eo(X,L) =8,

—er(X, L) + 2by(X) = 2,

ea(X, L) — 2(bo(X) — b1(X)) =2,

—e3(X, L) + 2(bo(X) — b1 (X) + b2(X)) = 0.

(3.7.2) X is the blowing up of P? at a point and L = 7*(Ops(2)) — E, where 7 : X — P3 is its
birational morphism and F is the exceptional divisor. Then by [3, Theorem 3.2] and (3.7.1)

above, we have

and

(3.7.3) (X, L) is either

I
o o o

|
S W N

(P! x P! x PY @ pfOpi (1)), (P? x P, @7_1p; Op2(1)) or (Ppz(Tp2), H(Tp2))

where p; is the ith projection and Tp2 is the tangent bundle of P2.

(3.7.3.1) The case where (X, L)
Since Tx = ®3_p;(Tp

),

(P! x P* x P!, @3, p; Ops1 (1)).
we have

3
a(Tx) = Y _pja(Tm)
=1

3
= Zp;cl Op1(2)),
e2(Tx) = pia(Te)pzer(Tpr) + piei(Ten )pser (Ter) + pycr (Zpr )p3er (Tpr)
= pic1(Om(2))p3e1(Op1(2)) + pie1(Op(2))p3e1(Opi (2)) + pie1 (O (2))p3e1(Op (2))
C3(X) = e(X)
On the other hand
bo(X) = 1,
bo(X) = 3bo(PY) + by (P1)by(PY) + 2bo(P)by (P1)? = 3,
b3(X) 3ba(P1) + by (P1)by (P') 4 2bo (P )by (P')? = 3.



Therefore

G:
=
>
=

I

~

w

I

2

ea(X,L) = (-1) z) co (X)L =6,
1=0
e3(X, L) = e(X)=5,
and
bo(X,L) = eo(X,L)=6,
bi(X,L) = —ei1(X,L)+2b(X)=2,
ba(X,L) = ea(X, L) —2(bo(X) — b1(X)) =4,
b3(X,L) = —e3(X,L)+2(bo(X)—b1(X)+b(X)) =3.
(3.7.3.2) The case where (X, L) = (P? x P2, @2, p;Opz(1)).

Since Tx = ®5_,p;(Tp2), we have

2
a(Tx) = > pja(Te)
j=1

2
= > pja(0p(3)),
j=1
c2(Tx) = pica(Tp2) + pici(Tp2 )pser(Tp2) + prca(Tp2)
= 3pOp2(1)® + 9p; Op2 (1)p5 Op2 (1) + 3p3Op2(1)?,
c3(Tx) = pica(Tp2)psei(Tp2) + piea(Tp2)pyca(Tp2)
= 9p}Op2(1)*p3Op2(1) + Ip; Op2 (1)p5 Opz2 (1)?,
(X)) = e(X).
On the other hand
bo(X) = 1,
bi(X) = 2¢(X)=0,
bo(X) = ba(P?) + by (P)by (P?) + by(P?) = 2,
b3(X) = 2b3(P?) + 2bo(P?)by (P?) = 0,
ba(X) 204 (P?) + 20b3(P?)by (P?) 4 by (P?)by (P?) = 3.
Therefore
eo(X,L) = L*=6,
1
er(X,L) = (1)l<2l”>cl_l(X)L3+lo,
=0
2 1+1
alxn = 3 1>l( l )Czl(X)LQHZG,
3 I
— 1) 14+ _
es(X,L) = g( 1) (l>03_l(X)L 6,
es(X,L) = e(X)=9,



and

bo(X,L) = eo(X,L)=6,

bU(X,L) = —er(X,L)+ 2bo(X) =2,

bo(X,L) = es(X,L) - 2(bo(X) — bi(X)) = 4,

by(X,L) = —es(X, L)+ 2(bo(X) — bi(X) + ba(X)) = 0,
ba(X,L) = es(X,L)—2(bo(X) — b1 (X) + b2(X) — b3(X)) = 3.

(3.7.3.3) The case where (X, L) 2 (Pp2(Tp2), H(Tp2)).
Then by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)] we have

€Q(X,L) = 82(%2) :K§2 —CQ(]P)Z) =67
er(X,L) = —(c1(Tp2) + Kpz2)c1(Tp2) = 0,
62(X7L) = CQ(P2)+CQ(7EP2) :6,

e3(X,L) = 2¢(P?) =6,

and

bO(Xv L) = 60(X, L) =6,
bi(X,L) = (a1(Tpe) + Kes)er(Tp) +2 =2,
bo(X,L) = ba(X) +e2(P?) —1=4,
b3(X,L) = b3(X)=0.

(3.7.4) The case where (X, L) is a linear section of the Grassmann variety Gr(5,2) parametrizing
lines in P*, embedded in P? via the Pliicker embedding. Then L™ = 5.

First we review the Chern class of Gr(p, ¢) parametrizing P4~ in PP~1. Let S (resp. Q) be
the universal subbundle (resp. the universal quotient bundle) of Gr(p, ¢). Then

c(Gr(p,q)) = c(S¥ ® Q). (1)
We note that rankS = ¢ and rank@ = p — ¢. From (1),
h(TGr(pg) = ch(SV)ch(Q) 2)

holds. Since ch(Q) + ch(S) = p, we have

ch(S) =q— ZChk(Q)'

E>1
On the other hand
chi(8Y) = q =Y _(~1)*chi(Q). (3)
E>1
Next we explain the Schubert caliculas. For A = (Ag,...,A\g) withp—g>Xg>... > Xg >0,

we set
{>\07 R Ad} = det(c)\i+j—1 (Q))Oﬁi,jﬁp'

Then ¢, (Q) = {m,0,...,0}. We note that the following equality holds.

{A}-en(Q) =D {n}, (4)

where the sum over p with p— ¢ > pg > Ao > -+ > pp > Npand Y 0 A =m—+ >0 ;.



Moreover we have

(@) Ros Ak = MH (5)

1<J

Here a; = p—q+i—XN, k=>" a, — 1@ and s = dim Gr(p,q) — ZLO(M —i) =
a(p =) = Yo (N — ).

Here we consider thde case where p = 5 and ¢ = 2. Then first we calculate ¢;(Gr(5,2)) for
1< j < 5. From (2) and (3), we have

ch(Gr(5,2)) = ch(SY)ch(Q)

— (2 - Z(—l)kchk(Q)) (3 + Z Chk(Q)) :
E>1 E>1

Using this, we get the following. (Here we note that ¢;(Q) = 0 for j > 4 because rank@ = 3.)

c1(Gr(5,2)) = 5a(Q)

2(Gr(5,2)) = 12¢1(Q)° — c2(Q)

c3(Gr(5,2)) = 20c1(Q)* — 10¢1(Q)c2(Q) + 5e3(Q)

ca(Gr(5,2)) = 28c1(Q)" — 38¢1(Q)*c2(Q) +20¢1(Q)e3(Q) + Tea(Q)?

¢5(Gr(5,2)) = 36¢1(Q)° — 90c1(Q)’c2(Q) + 40¢1 (Q)?e3(Q) + 45¢1(Q)c2(Q)? — 10¢2(Q)e3(Q).

Next we use the Scubert caliculas. First from (5) we get the following.

a(@Q°® =
a(@)'e(Q) =
a(Q)’es(Q) =

= w ot

Next we calculate c2(Q)%c1(Q)2. Since {2,0} - {2,0} = {3,1} + {2,2}, we have

2QPa(@? = [a@ 3.1+ [a@E2)
= 2

Next we calculate c2(Q)cs(Q)c1(Q). Since {2,0} - {3,0} = {3,2}, we have

Qe (Q) = / 1(Q)*(3,2)

= 1.
Hence
c1(Gr(5,2)L° = 5¢(Q)° =
c(Gr(5,2))L* = 1261(62)6 ( Q)% e2(Q) = 57
c3(Gr(5,2) L% = 20c1(Q)3¢ — 10c1(Q)*c2(Q) + 5¢1(Q)3e3(Q) = 75
ca(Gr(5,2))L* = 28¢1(Q)° — 38¢1(Q)*c2(Q) + 20¢1(Q)’e3(Q) + Te1 (Q)?c2(Q)* = 60
c5(Gr(5,2)L = 36¢1(Q)° — 90c1(Q) e (Q) 4 40¢1 (Q)3e3(Q)
+45¢1(Q)?c2(Q)* — 10¢1 (Q)c2(Q)e3(Q)
= 30.



Therefore

eo(X, L) LS =5,

er(X,L) = e (X)L° 5L =0,

ea(X,L) = eo(X)L* —4e(X)LP +10L° =7,

e3(X,L) = c3(X)L3 —3ca(X)L* + 61 (X)L° — 10L° = 4,

es(X,L) = c4(X)L? —2¢3(X)L% + 3¢o(X)L* — 4¢ (X)L° + 5L° =6,
es(X,L) = c5(X)L —ca(X)L? + c3(X)L? — co(X)L* + e (X)L° — L° =38,
es(X,L) = e(X)=10.

Next we calculate b;(X,L). Since bg(X) = ba(X) = 1, by(X) = bg(X) = bg(X) = 2
b1o(X) = b12(X) = 1 and b;(X) = 0 for every positive odd integer j, we have

)

)

)

5
2
)
= 0
2
4
2

3.7.5) The case where (X, L) is a complete intersection of two hyperquadrics in P**2. Then L™ = 4.
( p yperq

First we calculate e(X) in this case. In general we can prove the following.

Lemma 3.1 Let (X, L) be a complete intersection of two hypersurfaces of degree s and t in
P"+2. Then

n—1 n—1 j2+j n
)= (5) > (] e (,1a2,)+coien,

Proof. Let ¢; := ¢;(X) and H := Ox(1). Then the following holds (see [7, Example 3.2.12]).
(14 H)""™ = C(X)(1+ sH)(1 +tH).

Here C(X)=(14+¢1 + -+ c¢,). Hence

3
(cn + scn_1H) +t(ch—1H + scn_gHQ) = <n * )H"
n
3
(Cn—l + Scn—2H) + t(cn—QH + SCTL—3H2) = (n * 1) anl
n—
3
(co + sciH) +t(ciH + scoH?) = (n;— >H2

Hence

Cn+scy 1 H 4 (—t)"2 t(c; H" ' + scoH™)

(o))



Moreover since c; H" 1 = O(n— s —t+3)H" 1, we have c; H" + scoH" = (n —t+3)H
Therefore

Cn + sCp_1H

— (<n+3> +(—t)<Z4__i’> +
) e e )
S
(-
(

+

_|_

et
oo () - (i)
((1 — s 1+t(21;> —t2<21‘3>) .

By the same argument as above for every j with 1 < j <n — 1 we have

%\%

| @

Can_j + SCj_lHn_]+1

s " e n+3
= itz <(1 )=y () <n+3 - k:)) :

k=0

Hence

S MOREI MO BN oS ISR

O
Lemma 3.2 Let (X, L) be a complete intersection of two hyperquadrics in P"*2. Then

| 2n+4, if n is even,
e(X) = { 0, if n is odd.

Proof. By Lemma 3.1 we have

n n+2—j
cn = (=2)"2 + % n(—=1)" + (—2)‘9( 3 >

Next we prove the following.

Claim 3.1

5 1 n n+3
(2" + 5 | n Z:: kZ:: ’“<n+;k) (7)

{ 0, n is odd,

2n + 4, n s even.

10



Proof. First we note the following.

n n+2—j
> j<—2>’“( ) (®)
=1 =0 n+2—k
n nt+l—j n
n+2 n+2
— _2k 2n+2 7
2 (1) e e ()
n—1n+l—j 1 n
n+ 2 g mt+2 g_ifn+2
- -2 )+ o2 )3 (M),
= = n+2—k = n+2—k = 7
n n+2—j n n+2-—j
n -+ 2 n-+ 2
Sy e ak) = DX el ®
n nt+l—j
- e (1)
= = n+2—k
n—1ln+l—j

- S (152

1

P ()

- S (1)

j=1 k=0

3o (157

k=0

Then from (8) and (9) we have

e (05204 (05

+

J

n n

1

MH gM

n+l—j 1 n
Z k( n+2 )_Z<_2)k( n+2 >+Z(_2>n+2—j<n+2>
== n+2—k = n+2—k = J
n—1ln+1l— _7
+2
k(niz - k) +4n 46+ (—1)"2 — (=2)" 2 (10)
j=1 k=0

Here we prove (7) by induction on n.

If n =1 and 2, then (7) holds.

Next we assume that (7) holds for n — 1 is odd. Then by assumption we have the following
equality.

n—1n+

( 2)n+1+£ ( 1 n 1—|—Z 1- J n -+ 2 -0 (11)
2 (V" & n+2-k)) — 7

11



Then by using (11), we have

n nt+2—j
SR ECIES D DRCH (R

n+2—k

n—1n+l—j
= (—2)"+2 4 % <n -y > (—2)k( " +3 k) +4n 46 + (—1)"+2 — (—2)nF2

n—1n+l—j
n->y > (—2)k( nt2 )+4n+6+1—(—2)"+2

Next we assume that (7) holds for n — 1 is even. Then by assumption we have the following
equality.

n+1 1 n—1 i 7’L+2
SRR | CRRIEEED o SNCC (VOS] IR

n+2 1 n n 7’L+3
C R I CC D oD DNCC N (S

j=1 k=0
n—1n+l—j
1 n+2
= (—=2)"+2 4 ol e > (—2)* (n oo k) +4n 46 + (—1)"+2 — (—2)nF2
j=1 k=0

j=1 k=0
= (=2)"T2 4 % (Bn+5+2(=2)"" + (n—1)(-1)""' = 2(2n +2) — (-2)""?)
=0.
This completes the proof of Claim 3.1. O
From Claim 3.1 we get Lemma 3.2. O

Remark 3.1 Let (X, L) be a complete intersection of two hypersurfaces of degree s and ¢
in P"*2. Then from (6) we can write e(X) as follows.

n—k

e(X)=(—1)"st | Y _(-1)* (” Z 3) D snheiy

k=0 7=0

12
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Here we go back to the case (3.7.5). In this case, there exists a smooth ladder X D X; D
-+ D Xy of L such that (X, L;) is complete intersection of two hyperquadrics in Pr—i+2,
Since e;(X, L) = e(X,,—;), we see that

] 2044, if ¢ is even with ¢ > 2,
e”(X’L)_{ 0, if i is odd with i > 3.

13



(3.7.6)

‘We also note that ;
4,  ifi=0,
ei(X’L)_{ 0, ifi=1.

Next we calculate b;(X, L). Then

2% +4—25=i+d4, ifiiseven withi> 2,
0+24L =41, if ¢ is odd with ¢ > 3.

bz(X7L) = {

‘We also note that ;
4, if i =0,
bi(X’L){ 2, ifi=1

The case where X is a hypercubic in P"*! and L = Ox(1).

Here we consider more general case than this. In general we can prove the following claim.

Lemma 3.3 Let (X, L) be a polarized manifold of dimension n such that X is a hypersurface
of degree m and L = Ox(1). Then

1

ei(Xa L) = ooy ((1 — m)i+2 -1+ m(z + 2)) ,
bi(X,L) = (L =m) ™2 — 1+ m(i +2) — i, if i is even with i <n —1,
AT —A (L =m) R =1 m(i+2)+i+ 1, difids odd withi<n—1.

Proof. First we calculate e, (X, L). Let ¢; := ¢;(X) and H := Ox(1). Then the following
holds (see [7, Example 3.2.12]).

(A+H)"2 =04c 4+ +cp)(1+mH).

Hence
2
Cpn+mep_1H = <n+ )H”
n
2
Cn_1+mc,_oH = <n+ >H”1
n—1
2
cp+mH = (ni— )H
So we have
1 n+2 afmn+2 n+2
n _ o an - o 2 _ 3 _ n+1 Hn
c (—m) +m2<( m)<2)+(m)< >—|— + (—m) nt 1

.
3
= ey (1w -1 e (M)

_ %((1—m)"+2—1+m(n+2)).

- () ) m

On the other hand, in this case, there exists a smooth ladder X D Xy D --- D X,,_1 of L
such that (X;,L;) is a hypersurface of degree m in P"~9*!1. Since €;(X,L) = e(X,,_;), by
the above argument we see that

(X, L)=—(1-m)"—=1+m(i+2).

3=

14



(3.7.7)

Next we calculate b;(X, L). Since

1, if 7 is even with i <n — 2,
bi(X) = { 0, if 7 is odd with 1 < n — 2,

we have
bi(X.L) — L (L=m)*—14+m(i+2) -2 4, if i is even with i <n —1,
Tl =2 (= m) =14+ m(i+2) +2- 3L ifiis odd with i <n — 1.
B L@ =m)*2 —1+m(i+2)) -1, if 7 is even with i <n —1,
- —L((1=m)™2—14+m(i+2)+i+1, ifiisodd withi<n—1.
This completes the proof of Lemma 3.3. O

The case where X is a double covering of P branched along a smooth hypersurface of degree
4, and L is the pull-back of Opn(1). Here we consider more general case than this.

Lemma 3.4 Let X be a double covering of P™ branched along a smooth hypersurface of
degree m with even m > 4, and L is the pull-back of Opn(1). Then

ei(X, L)

1 A
i +2——(m—1+(1—m)*!
i+ m(m +( m)' ),

bi(X, L)

. 1 ; ; i if 1 is even
- _ _ i+1 _1)i+1 3
<Z+2 m(m- 1+ d-m )>+( D { i+1  ifiis odd.

Proof. First we calculate e, (X, L). Let B be the branch locus. Then
e(X) = 2¢(P") — e(B).
Hence by Lemma 3.3

en(X, L) = e(X)
= 2¢(P") —e(B)
1
= 2n+2——(1-m)"" +m(n+1)-1)
m
1
= 2— —(m—1+(1—m)"*).
n 2= (= (L))
Next we consider e;(X, L). First we note that A(X, L) = 1 in this case. Since Bs|L| = (),
there exists a smooth ladder X D X; D --- D X,,_1 of L. Then we see that A(X;,L;) =1
and L7/ = 2, where L; := L|x; because g(X,L) =m/2 —1>1=A(X,L) and L" =2 =
2A(X,L). Hence X; is a double covering of P"~J branched along a smooth hypersurface
of degree 4, and L; is the pull-back of Opn-;(1). Since e;(X, L) = e(X,—;), by the above
argument we see that for every integer 7 with ¢ > 1, we have

ei(X,L) = i+2—%(m—1+(1—m)i+1). (13)

Here we note that eo(X,L) = L" =2 =0+2— (34 (=3)°"!). Hence (13) also holds for
1=0.
Next we calculate b;(X, L). By the Barth-type theorem (see e.g. [8, Theorem 7.1.15]), we

have 4
1, if ¢ is even with ¢ # n,
bi(X):{ 0,  if4is odd with i # n.

15



(3.7.8)

Hence we have

L) = (1) [ e(x 1) 23 (-1 (x)
=0

- 1 - < izltl if ¢ is even
_ 1) (s _ _ _ i+1) _o9(_1)\¢. ] ’
= (-1 <z+2 m(m 1+(1—m) ) 2(—1) { i1 1 if 4 is odd,

2
i if 7 is even,

B . 1 i1 i+1
= <z+2—m(m—1+(1_m) )>+(_1) i+1 if 7 is odd.

We get the assertion of Lemma 3.4. O

The case where (X, L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3,2,1,...,1). Then L™ =1 and Bs|L| = {p} (see [1, (16.7) Theorem and Appendix 1]).

In this case, there exists a smooth ladder X D X; D --- D X,,_; of L such that (X, L;) is
a weighted hypersurface of degree 6 in the weighted projective space P(3,2,1,...,1). Since
e;(X,L) = e(X,—;), in order to calculate e;(X, L) for ¢ > 1, it suffices to calculate e(X).

Let 7 : X* — X be the blowing up at p € X. Then 7*(L) — E is base point free and let
f: X* — P! be the morphism defined by |7*(L)— E|. In this case, there exists a projective
bundle p : V — P"~! and a double covering p : X* — V such that f = po p. Here we note
that V' = Ppn-1(Opn-1(2) ® Opn-1). Let Hy be the tautological line bundle of V and let B
be the branch locus of p. Then there exist By € |[Hy — 27*Oprn-1(1)| and B € |3Hy | such
that By 2 P! and B = By + By. Here we note that the following equality holds.

e(X) = e(X*)—e(E)+1, (14)
e(X*) = 2¢e(V)—e(B), (15)
e(B) = e(By)+e(Bs). (16)

Therefore in order to calculate e(X), we need the value of e(F), e(By), e(Bz), and e(V).

First we note that
e(E) =e(P" Y =n (17)

and
e(By) = e(P"!) = n. (18)

Next we calculate e(V'). By [1, Proof of Lemma in Appendix 2], we see that there exist the
following three exact sequence:

0— 2HV - 27T*O]Pm71(1) — TV — 7fp>n—1 |V — O, (19)
0— Oy — H'(P" ! Opn1(1))Y @ 7 (Opn-1(1)) = Tpn-1|y — 0, (20)
0—>’TB2 —>Tvlgz — (3Hv)|32 — 0. (21)
From (19), we have
o(Tyy) = c(2Hy — 27 Opn1 (1))e(Tpn—1|v/). (22)
Hence
Cn(V) = (2HV — 27T*O]pn—1 (1))Cn_1(%n—1 |V)

= (2Hy — 20 Opn-1(1)) (n(n* Opn1 (1)) 1).

16



By (20), we get

(1 Opn 1 (1)) = e(Oy Jel(n* Ton). (23)
Hence
ot (0" Tpnr) = (n " 1)w*oﬂm1<1>>“1.
Therefore
cn(V) = (2Hy — 27" Opn—1 (1)) (n(7* Opn—1(1))* 1) (24)
= 2nHy7* Opn-1(1))"!
2n.

Next we calculate e(Bs). Before this, we note the following. Let £ := Opn-1(2) ® Opn-1 and
let H(E) be the tautological line bundle of Ppn-1(E). Then V = Ppn-1(E) and H(E) = Hy .
In this case, since ¢;(€) = 0 for any j > 2, we have s;(€) = Opn-1(2)7. Therefore

H,w* Opn1 (1) = Opna (1) 554 (E) = 2271, (25)
From (21), we have
o(T|p,) = c(Tp,)c(3Hv |, ). (26)
From (26) we obtain the following:
cn—1(B2) + ¢n—2(B2)(3Hv|B,) = cn1(V)B2
cn—2(B2) + cn3(B2)(3Hv|B,) = cn2(V)Bs
C1 (BQ) + 3[‘IV|B2 = Cl(V)BQ
Therefore
Cnfl(Bg) = 3(Cn,1(V)HV + (—3)Cn,2(V)H‘2/
o (23)" 2 (V) H T 4 (=3)" T H ™). (27)

On the other hand, by (22) we have
Cj (V) = (2HV - QW*O]Pinfl (1))63'_1(7}%71 ‘V) +¢; (7&»7171 ‘V)

(2 e () () o

Hence by using (25) we get

G = 21 sy () <21 ) ) e onay

I

[N

3

d
7~
()
| 3 <
—_
~_

+

)

3

4

B
VR
~_

Therefore

nll(S)"a‘lc]-(V)HGj - QS(_(S)njl(' g > +7-L

j=



On the other hand

]
3
(]}
—
\
=)
S~—
3
d
L
N
3
~~_
Il
—_
oo‘H
3
|
—
N
2
3
d
+
—
N\
3
~_

<
Il
—
<
Il
—

(1+(=6))" = (=6)n—1)

5|~ &l ~

and

3
~L7JL
—
(@]
=

3
|
o
|
—
VR
.3
"
I
|
| =
i
—
—
(@]
=
3
|
<.
VRS
S 3
N~

<.
Il

Since Hf = 2"~1 from (27) we get

cn—1(B2) (29)
=3 %8((—5)" +6n—1)+ %((—6)" —(=5)"+1)+ (—3)"—12”-1>
1 n o on+1
From (18) and (29), we have
e(B) = e(B1) +e(Bz) = 2n + # (30)
By (24) and (30) we get
e(X*) =2e(V) —e(B) = 2n+ (= ); -1 (31)
Therefore by (17) and (31)
e(X) = e(X*) — e(E) +1=n+ (’5); 2 (32)
So we see that .
el X, L) =i+ M% (33)

for every integer ¢ with 1 < i < n. Here we note that this equality holds for the case where
i=0.
Next we calculate b;(X, L). Since

bi(X) = L, if j is even with j #n —1,
AT 0, if s odd with j #n - 1,
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we have

. - of 1V, %, if ¢ is even,

AN ) 2(=1) { BLq ifdis odd,
(—1) (=542 £ is even,
yER= i s odd.

bz(X’L) = (71)z (el(XvL)QZ(l)jb](X)

Il
~—
|
—_
N
<.

Example 3.8 The case where (X, L) is a hyperquadric fibration over a smooth curve C. Let
f + X — C be its morphism. We put £ := f.(L). Then £ is a locally free sheaf of rank n + 1
on C. Let 7 : Po(€) — C be the projection. Then there exists an embedding i : X — P (€)
such that f = 7woi, X € |2H(E) + 7*(B)| for some B € Pic(C) and L = H(E)|x. Let e :=deg&
and b := deg B. Then by [6, Theorem 3.1], we see that the following holds. Let (X,L) be a
hyperquadric fibration over a smooth curve C' with dim X = n > 3, and let ¢« be an integer with
0 <7< n. Then

‘ - i ) 200+ 1)(1 — g(C)) ifiis odd,

ei(X,L) = (—1)"(2e + (i + 1)b) + { 2i(1 - g(Q)) if i is even.

Example 3.9 The case where (X, L) is a scroll over a smooth curve C.

Then by [4, Corollary 3.1 (3.1.1) and Corollary 3.3 (3.3.1)], we see that the following holds. Let &
be an ample vector bundle of rank n on C such that X = Po(€) and L = H(E).

| ([ i(2-29(0)) ifi>1,
ei(X, L) _{ deg & ifi=0.

C( R(X,C) ifi>1,
bi(X, L) = { deg & if i = 0.

Example 3.10 The case where (X, L) is a scroll over a smooth surface S.
Let € be an ample vector bundle of rank n — 1 on S such that X = Pg(€) and L = H(E). Then
by [4, Corollary 3.1 (3.1.2) and Corollary 3.3 (3.3.2)], we see that the following holds.

(i — 1)ca(S) if i > 3,
. _ ) cea(8) +e2(E) ifi=2,
L) =3 e () + Ks)er(€) ifi—1,
5(E) if i = 0.

hi(X,C) if m>1i>3,
B h?(X,C) + c2(E) — 1 ifi=2,
bi(X, L) = (&)1 (§) + Kg)+2 ifi=1,
$2(€) ifi=0.

References

[1] T. Fujita, On the structure of polarized manifolds with total deficiency one, III J. Math. Soc.
Japan 36 (1984), 75-89.

19



[2] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note
Ser. 155, Cambridge University Press, (1990).

[3] Y. Fukuma, On the sectional invariants of polarized manifolds, J. Pure Appl. Algebra 209
(2007), 99-117.

[4] Y. Fukuma, Sectional invariants of scroll over a smooth projective variety, Rend. Sem. Mat.
Univ. Padova 121 (2009), 93-119.

[5] Y. Fukuma, Sectional class of ample line bundles on smooth projective varieties, in prepara-
tion.

[6] Y. Fukuma, K. Nomakuchi and A. Uraki Sectional invariants of hyperquadric fibrations over
a smooth projective curve, Tokyo J. Math. 33 (2010), 49-63.

[7] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 2 (1984),
Springer-Verlag.

[8] R. Lazarsfeld, Positivity in Algebraic Geometry I, II Ergebnisse der Mathematik, Springer-
Verlag, 2004.

Department of Mathematics
Faculty of Science

Kochi University
Akebono-cho, Kochi 780-8520
Japan

E-mail: fukuma@kochi-u.ac.jp

20



