CONGRUENT ZETA FUNCTIONS. NO.2
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In this lecture we define and observe some properties of conguent zeta
functions.

| existence of finite fields I1. |

For any prime p, F, = Z/pZ. To construct F,- for r,

(1) We find an irreducible polynomial u(X) € F,[X] of degree r.
(Such a thing exists always.)

(2) K =F,[X]/(u(X))is a field with p" elements. It is an extension
field of F, generated by the class a = X of X in K.

(3) In other words, K = FF,[a] where a is a root of w.

(4) The isomorphism class of K is independent of the choice of w.

Proof of Lemma 1.3 (5). We prove the following more general result

LEMMA 2.1. Let K be a field. Let G be a finite subgroup of K* (=multiplicative
group of K). Then G is cyclic.

PROOF. We first prove the lemma when |G| = ¢* for some prime
number /. In such a case Euler-Lagrange theorem implies that any
element g of G has an order ¢° for some s € N, s < k. Let gy € G be an
element which has the largest order m. Then we see that any element
of G satisfies the equation

" =1.
Since K is a field, there is at most m solutions to the equation. Thus
|G| < m. So we conclude that the order m of gy is equal to |G| and
that G is generated by go.

Let us proceed now to the general case. Let us factorize the order

|G-
G| = bk ke (01,0o, ... 0 - prime, ki, ko, ... Kk € Z~p).
Then G may be decomposed into product of p-subgroups
G=GCGixGox--xC (|G| =07(G=123,...,1).
By using the first step of this proof we see that each G is cyclic. Thus

we conclude that G is also a cyclic group. O

EXERCISE 2.1. Let G be a finite abelian group. Assume we have a
decomposition |G| = mymy of the order of G such that m; and my are
coprime. Then show the following;:

(1) Let us put
Hyj={9€Gig™ =ect (i=12)
Then H,, H, are subgroups of G.
(2) [Hj| =m; (j=1,2).
(3) We have
G = HlHQ.

EXERCISE 2.2. Let G, G be finite cyclic groups. Assume |G| and
|G2| are coprime. Show that G x G is also cyclic.



YOSHIFUMI TSUCHIMOTO

2.1. Affine schemes. We define affine schemes as a representable
functor.

DEFINITION 2.2. Let R be a ring. Then we denote by Spec(R) the
affine scheme with coordinate ring R.

For any affine scheme Spec(R) and for any ring S, we define the
S-valued point of Spec(R) by

Spec(R)(S) = Homying (R, S)

LEMMA 2.3. Let k be a ring. Let {f1, fa, ..., fm} be a set of equations
m n-variables X1, Xo, ..., X, over k. Let us put

A=Fk[Xy, Xo, ..., X0/ (f1s for o5 fn)-
Then we have a natural identification

V(f1, far s Jm) (K) = Spec(A)(K)

for any algebra K over k.

COROLLARY 2.4. We employ the assumption as the Lemma. Then:

(1) When the “target algebra” K is given, the set of solutions V (f1, fa, ..

depends only on the affine coordinate ring A.
(2) For any element P € Spec(A)(K), the “evaluation map”

A> frevalp(f) e K

is defined in an obvious way. Thus every element of A may be
regarded as a K-valued function on Spec(A)(K).

2.2. localization.

DEFINITION 2.5. Let f be an element of a commutative ring A. Then
we define the localization Ay of A with respect to f as a ring defined
by

Ap =AY/ (Y[ =1)
where Y is a indeterminate.
LEMMA 2.6. When K is a field, then we have a canonical identifica-

tion
Spec(Ayf)(K) = {P € Spec(A)(K);evalp(f) # 0}.
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