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In this lecture we define and observe some properties of conguent zeta
functions.

existence of finite fields II.
For any prime p, Fp = Z/pZ. To construct Fpr for r,

(1) We find an irreducible polynomial u(X) ∈ Fp[X ] of degree r.
(Such a thing exists always.)

(2) K = Fp[X ]/(u(X)) is a field with pr elements. It is an extension
field of Fp generated by the class a = X̄ of X in K.

(3) In other words, K = Fp[a] where a is a root of u.
(4) The isomorphism class of K is independent of the choice of u.

Proof of Lemma 1.3 (5). We prove the following more general result

Lemma 2.1. Let K be a field. Let G be a finite subgroup ofK×(=multiplicative
group of K). Then G is cyclic.

Proof. We first prove the lemma when |G| = ℓk for some prime
number ℓ. In such a case Euler-Lagrange theorem implies that any
element g of G has an order ℓs for some s ∈ N, s ≤ k. Let g0 ∈ G be an
element which has the largest order m. Then we see that any element
of G satisfies the equation

xm = 1.

Since K is a field, there is at most m solutions to the equation. Thus
|G| ≤ m. So we conclude that the order m of g0 is equal to |G| and
that G is generated by g0.
Let us proceed now to the general case. Let us factorize the order

|G|:

|G| = ℓk11 ℓk22 . . . ℓktt (ℓ1, ℓ2, . . . , ℓt : prime, k1, k2, . . . , kt ∈ Z>0).

Then G may be decomposed into product of p-subgroups

G = G1 ×G2 × · · · ×Gt (|Gj| = ℓ
kj
j (j = 1, 2, 3, . . . , t)).

By using the first step of this proof we see that each Gj is cyclic. Thus
we conclude that G is also a cyclic group. �

Exercise 2.1. Let G be a finite abelian group. Assume we have a
decomposition |G| = m1m2 of the order of G such that m1 and m2 are
coprime. Then show the following:

(1) Let us put

Hj = {g ∈ G; gmj = eG} (j = 1, 2)

Then H1, H2 are subgroups of G.
(2) |Hj| = mj (j = 1, 2).
(3) We have

G = H1H2.

Exercise 2.2. Let G1, G2 be finite cyclic groups. Assume |G1| and
|G2| are coprime. Show that G1 ×G2 is also cyclic.
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2.1. Affine schemes. We define affine schemes as a representable
functor.

Definition 2.2. Let R be a ring. Then we denote by Spec(R) the
affine scheme with coordinate ring R.
For any affine scheme Spec(R) and for any ring S, we define the

S-valued point of Spec(R) by

Spec(R)(S) = Homring(R, S)

Lemma 2.3. Let k be a ring. Let {f1, f2, . . . , fm} be a set of equations
in n-variables X1, X2, . . . , Xn over k. Let us put

A = k[X1, X2, . . . , Xn]/(f1, f2, . . . , fm).

Then we have a natural identification

V (f1, f2, . . . , fm)(K) = Spec(A)(K)

for any algebra K over k.

Corollary 2.4. We employ the assumption as the Lemma. Then:

(1) When the “target algebra”K is given, the set of solutions V (f1, f2, . . . , fm)(K)
depends only on the affine coordinate ring A.

(2) For any element P ∈ Spec(A)(K), the “evaluation map”

A ∋ f 7→ evalP (f) ∈ K

is defined in an obvious way. Thus every element of A may be
regarded as a K-valued function on Spec(A)(K).

2.2. localization.

Definition 2.5. Let f be an element of a commutative ring A. Then
we define the localization Af of A with respect to f as a ring defined
by

Af = A[Y ]/(Y f − 1)

where Y is a indeterminate.

Lemma 2.6. When K is a field, then we have a canonical identifica-
tion

Spec(Af )(K) = {P ∈ Spec(A)(K); evalP (f) 6= 0}.


