$\lambda $-ring

DEFINITION 8.3   A pre-$\lambda $-ring $A,\lambda_T: A \to \Lambda_{(T)}(A)$ is a $\lambda $-ring if $\lambda_T:A \to \Lambda_{(T)}(A)$ is a $\lambda $-homomorphism.

PROPOSITION 8.4   For any commutative ring $A$, $(\Lambda(A),\lambda_U: \Lambda_{(T)}(A)\to \Lambda_{(U)}\Lambda_{(T)}(A)$ is a $\lambda $-ring.

PROOF.. To avoid some confusion, we use lower case letters for indeterminate variables. Moreover, to distinquish all the lambda's around here, we denote by $\overset{\circ}{\lambda}$ the lambda operation on $\Lambda (A)$:

$\displaystyle \overset{\circ}{\lambda}_{(t,u)}: \Lambda_{(t)} A \ni [a]_t \mapsto [[a]_t]_u\in
\Lambda_{(u)}\Lambda_{(t)} A
$

where $[a]_t$ is the Teichmüller lift of $a\in A$ in $\Lambda_{(t)}A$. We need to verify the commutativity of the following diagram:

$\displaystyle \xymatrix
{
\Lambda_{(u)}(A) \ar[r]^{\overset{\circ}{\lambda}_{(t...
...verset{\circ}{\lambda}_{(t,v)}}
&\Lambda_{(t)}(\Lambda_{(v)}\Lambda_{(u)}A)
}
$

which can be verified by a diagram chasing for generators $[a]_u (a\in A)$:

$\displaystyle \xymatrix
{
[a]_{u} \ar[r]^{\overset{\circ}{\lambda}_{(t,u)}} \ar...
...rc}{\lambda}_{(v,u)})}\\
[[a]_u]_v \ar[r]_{\lambda_{(t,v)}}
&[[[a]_u]_v]_t
}
$

% latex2html id marker 2069
$ \qedsymbol$

---