ring homomorphism and spectrum

LEMMA 07.5   Let $A$,$B$ be two ring homomorphisms. Let

$\displaystyle \alpha: A\to B
$

be a ring homomorphism (which we always assume to be unital).

then we have a associate map

$\displaystyle \operatorname{Spec}(\alpha): \operatorname{Spec}(B)\to \operatorname{Spec}(A)
$

defined by

% latex2html id marker 4098
$\displaystyle \operatorname{Spec}(\alpha)(\mathfra...
...pha^{-1}(\mathfrak{p}) \qquad(\forall \mathfrak{p}\in \operatorname{Spec}(B)).
$

The map $\operatorname{Spec}(\alpha)$ has the following properties.
  1. $\displaystyle \operatorname{Spec}(\alpha)(\mathfrak{p})=\{ f \in A; \rho_\mathfrak{p}(\alpha(f))=0 \}
$

  2. $\displaystyle \operatorname{Spec}(\alpha)^{-1}(O_f)=O_{\alpha(f)}
$

    for any $f\in A$.
  3. $\operatorname{Spec}(\alpha)$ is continuous.