next up previous
Next: local rings Up: Algebraic geometry and Ring Previous: general localization of a

general localization of modules

DEFINITION 05.7   Let $ S$ be a multiplicative subset of a commutative ring $ A$ . Let $ M$ be an $ A$ -module we may define $ S^{-1}M$ as

$\displaystyle \{ (m/s); m\in M , s\in S\} / \sim
$

where the equivalence relation $ \sim$ is defined by

% latex2html id marker 1073
$\displaystyle (m_1/s_1)\sim (m_2/s_2) \ \iff \ t (m_1 s_2 -m_2 s_1)=0 \quad (\exists t \in S).
$

We may introduce a $ S^{-1}A$ -module structure on $ S^{-1}M$ in an obvious manner.

$ S^{-1}M$ thus constructed satisfies an universality condition which the reader may easily guess.



2017-05-18