Congruent zeta functions. No.2

Yoshifumi Tsuchimoto

In this lecture we define and observe some properties of conguent zeta functions.

\fbox{existence of finite fields II.}

For any prime $ p$, $ \mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$. To construct $ \mathbb{F}_{p^r}$ for $ r$,

  1. We find an irreducible polynomial $ u(X)\in \mathbb{F}_p[X]$ of degree $ r$. (Such a thing exists always.)
  2. $ K=\mathbb{F}_p[X]/(u(X))$ is a field with $ p^r$ elements. It is an extension field of $ \mathbb{F}_p$ generated by the class $ a=\bar X$ of $ X$ in $ K$.
  3. In other words, $ K=\mathbb{F}_p[a]$ where $ a$ is a root of $ u$.
  4. The isomorphism class of $ K$ is independent of the choice of $ u$.


Proof of Lemma 1.3 (5). We prove the following more general result

LEMMA 2.1   Let $ K$ be a field. Let $ G$ be a finite subgroup of $ K^\times$(=multiplicative group of $ K$). Then $ G$ is cyclic.

PROOF.. We first prove the lemma when $ \vert G\vert=\ell^k$ for some prime number $ \ell$. In such a case Euler-Lagrange theorem implies that any element $ g$ of $ G$ has an order $ \ell^s$ for some $ s\in \mathbb{N}$, % latex2html id marker 901
$ s \leq k$. Let $ g_0\in G $ be an element which has the largest order $ m$. Then we see that any element of $ G$ satisfies the equation

$\displaystyle x^m=1 .
$

Since $ K$ is a field, there is at most $ m$ solutions to the equation. Thus % latex2html id marker 915
$ \vert G\vert\leq m$. So we conclude that the order $ m$ of $ g_0$ is equal to $ \vert G\vert$ and that $ G$ is generated by $ g_0$.

Let us proceed now to the general case. Let us factorize the order $ \vert G\vert$:

% latex2html id marker 929
$\displaystyle \vert G\vert=\ell_1^{k_1} \ell_2 ^{k_2} \dots \ell_t ^{k_t}
\qquad(\ell_1,\ell_2,\dots, \ell_t:$prime, $\displaystyle k_1,k_2,\dots,k_t \in \mathbb{Z}_{>0}).
$

Then $ G$ may be decomposed into product of $ p$-subgroups

% latex2html id marker 936
$\displaystyle G=G_1\times G_2 \times \dots \times G_t \qquad
(\vert G_j\vert=\ell_j^{k_j} (j=1,2,3,\dots,t)).
$

By using the first step of this proof we see that each $ G_j$ is cyclic. Thus we conclude that $ G$ is also a cyclic group. % latex2html id marker 886
$ \qedsymbol$

EXERCISE 2.1   Let $ G$ be a finite abelian group. Assume we have a decomposition $ \vert G\vert=m_1 m_2$ of the order of $ G$ such that $ m_1$ and $ m_2$ are coprime. Then show the following:
  1. Let us put

    % latex2html id marker 957
$\displaystyle H_j=\{g\in G; g^{m_j}=e_G\} \qquad(j=1,2)
$

    Then $ H_1,H_2$ are subgroups of $ G$.
  2. $ \vert H_j\vert=m_j$ ($ j=1,2$).
  3. We have

    $\displaystyle G=H_1 H_2.
$

EXERCISE 2.2   Let $ G_1,G_2$ be finite cyclic groups. Assume $ \vert G_1\vert$ and $ \vert G_2\vert$ are coprime. Show that $ G_1\times G_2$ is also cyclic.