今日のテーマ: 直交射影を表す行列(2)
ベクトル空間 の基底
が与えられたとき、
の元
は
の元
と
同一視されるのでした。
が計量ベクトル空間で、
が
正規直交基底(ONB) ならば、
の内積は
の標準内積に対応します。
の元
の標準内積は、行列の積を用いて
と書くことができることにも注意しておきます。
先週に引き続き以下でも、標準的な内積を用いる。
の像(Image)と核(Kernel)の定義にも注意しておこう。
に対して、
正方行列 について、つぎのことにも注意しておく。(上記補題の
幾何学的な言い換え)