next up previous
Next: About this document ...

Algebraic geometry and Ring theory

Yoshifumi Tsuchimoto

% latex2html id marker 612
\fbox{quadratic and cubic curves}

DEFINITION 08.1   For any ring $ A$ , we define its Krull dimension to be the maximum of ascending chains of primes in $ A$ . Namely,

% latex2html id marker 699
$\displaystyle \operatorname{Krulldim}(A)
=\max\{n;A...
...p}_n \supsetneq \mathfrak{p}_{n-1}\supsetneq \dots \supsetneq \mathfrak{p}_0\}
$

DEFINITION 08.2   A local ring $ A=(A,\mathfrak{m})$ is called regular if its Krull dimension is equal to $ \dim_{A/\mathfrak{m}}(\mathfrak{m} /\mathfrak{m}^2)$ >

PROPOSITION 08.3   Let $ \mathbbm{k}$ be a field of characterictic % latex2html id marker 717
$ \neq 2$ . Then every quadratic curve (a curve defined by a homogeneous polynomial of degree $ 2$ ) in $ \P ^2$ over $ \mathbbm{k}$ is isomorphic to a curve of the form

% latex2html id marker 725
$\displaystyle a X^2 + b Y^2+c Z^2=0. \qquad(a,b,c\in \mathbbm{k}).
$

In particular, every quadratic curve in $ \P ^2$ over $ \mathbb{R}$ is isomorphic to a curve $ X^2+Y^2=Z^2$ .

PROPOSITION 08.4   Let $ \mathbbm{k}$ be a field of characterictic % latex2html id marker 740
$ \neq 2,3$ . Then every cubic curve (a curve defined by a homogeneous polynomial of degree $ 3$ ) in $ \P ^2$ over $ \mathbbm{k}$ is isomorphic to a curve of the form

% latex2html id marker 748
$\displaystyle ZY^2=X^3 + p XZ^2 + q Z^3 \qquad(p,q\in \mathbbm{k}).
$

It should be meaningful to point out:

PROPOSITION 08.5   Let $ \tau$ be a imaginary number in $ \mathbb{C}$ . $ \tau$ defines a lattice (a discrete subgroup of rank $ 2$ in $ \mathbb{C}$ ) $ L=\mathbb{Z}+\tau \mathbb{Z}$ . A complex manifold $ \mathbb{C}/L$ may be embedded to the complex projective plane $ \P ^2(\mathbb{C})$ by the Weierstrass $ \wp$ -function $ \wp(z;L)$ and its derivative $ \wp'(z;L)$ . Namely, a rational map defined by

$\displaystyle \mathbb{C}\ni z \mapsto [\wp(z;L):\wp'(z;L):1] \in \P ^2(\mathbb{C})
$

gives a holomorphic map $ f: \mathbb{C}/L \to \P ^2(\mathbb{C})$ . moreover, $ \wp, \wp'$ satisfy a cubic relation so that $ f$ gives an isomorphism of $ \mathbb{C}/\mathbb{Z}+\tau \mathbb{Z}$ and a cubic curve in $ \P ^2(\mathbb{C})$ .


next up previous
Next: About this document ...
2017-07-21