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6.1. sheaves. Affine spectrum Spec(A) of a ring A carries one more
important structure. Namely, its structure sheaf.
We will firstly review some definitions and first properties of sheaves.
To illustrate the idea, we recall an easy lemma in topology.

Lemma 6.1 (Gluing lemma). Let X, Y be a topological spaces. Let
{Uλ}λ∈Λ be an open covering of X.

(1) If we are given a collection of continuous maps {fλ : Uλ →
Y }λ∈Λ such that

fλ|Uλ∩Uµ
= fµ|Uλ∩Uµ

holds for any pair (λ, µ) ∈ Λ2, then we have a unique continuous
map f : X → Y such that

f |Uλ
= fλ

holds for any λ ∈ Λ.
(2) Conversely, if we are given a continuous map f : X → Y , then

we obtain a collection of maps {fλ : Uλ → Y }λ∈Λ by restriction.

Proof. (1) It is easy to verify that we have a well-defined map

f : X → Y

with

f |Uλ
= fλ.

The continuity of f is proved by verifying that the inverse image of any
open set V ⊂ Y by f is open in X . �

6.1.1. A convention. Before proceeding further, we employ the follow-
ing convention.
For an open covering {Uλ}λ∈Λ of a topological space X , we write

Uλµ = Uλ ∩ Uµ, Uλµν = Uλ ∩ Uµ ∩ Uν ,

and so on.

6.1.2. presheaves. We first define presheaves.

Definition 6.2. Let X be a topological space. We say “a presheaf
F of rings over X is given” if we are given the following data.

(1) For each open set U ⊂ X , a ring denoted by F(U). (which is
called the ring of sections of F on U .)

(2) For each pair U, V of open subsets of X such that V ⊂ U , a
ring homomorphism (called restriction)

ρV U : F(U) → F(V ).

with the properties

(1) F(∅) = 0.
(2) We have ρU,U = identity for any open subset U ⊂ X .
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(3) We have
ρWV ρV U = ρWV

for any open sets U, V,W ⊂ X such that W ⊂ V ⊂ U .

6.1.3. sheaves.

Definition 6.3. Let X be a topological space. A presheaf F of rings
over X is called a sheaf if for any open set U ⊂ X and for any open
covering {Uλ}λ∈Λ of U , it satisfies the following conditions.

(1) (“Locality”) If there is given a local section f, g ∈ F(U) such
that

ρUλU(f) = ρUλU(g)

holds for all λ ∈ Λ, then we have f = g
(2) (“Gluing lemma”). If there is given a collection of sections

{fλ}λ∈Λ such that

ρUλµUλ
(fλ) = ρUλµUµ

(fµ)

holds for any pair (λ, µ) ∈ Λ2, then we have a section f ∈ F(U)
such that

ρUλU(f) = fλ
holds for all λ ∈ Λ.

We may similarly define sheaf of sets, sheaf of modules, etc.

Lemma 6.4. Let X be a topological set with an open base U. To define
a sheaf F over X we only need to define F(U) for every member U of U
and check the sheaf axiom for open bases. In precise, given such data,
we may always find a unique sheaf G on X such that G(U) ∼= F (U)
holds in a natural way. (That means, the isomorphism commutes with
restrictions wherever they are defined.)

Proof. Let F be such. For any open set U ⊂ X , we define a
presheaf G by the following formula.

G(U) =

{

(sV ) ∈
∏

V ∈U,V⊂U

F(V );
ρWV (sV ) = sW for any V,W ∈ U

with the property W ⊂ V ⊂ U .

}

Restriction map of G is defined in an obvious manner.
Then it is easy to see that G satisfies the sheaf axiom and that

G(U) ∼= F(U)

holds for any U ∈ U in a natural way.
�

Lemma 6.5. Let A be a ring.

(1) We have a sheaf O of rings on Spec(A) which is defined uniquely
by the property

O(Of) = Af (∀f ∈ A)

(2) For any A-module M we have a sheaf M̃ of modules on Spec(A)
which is defined uniquely by the property

M̃(Of) = Mf (∀f ∈ A)

(3) For any A-module M , the sheaf M̃ is a sheaf of O-modules on
Spec(A). That means, it is a sheaf of modules over Spec(A)
with an additional O-action (which is defined in an obvious
way.)
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Proof. We prove (2).
From the previous Lemma, we only need to prove locality and gluing

lemma for open sets of the form Of . That means, in proving the
properties (1) and (2) of Definition 6.3, we may assume that Uλ =
Ofλ, U = Of for some elements fλ, f ∈ A.
Furthermore, in doing so we may use the identification Of ≈ SpecAf .

By replacing A by Af , this means that we may assume that Of =
Spec(A).
To sum up, we may assume

U = Spec(A), Uλ = Ofλ .

To simplify the notation, in the rest of the proof, we shall denote by

iλ : M → Mfλ

the canonical map which we have formerly written ifλ . Furthermore,
for any pair λ, µ of the index set, we shall denote by iλµ the canonical
map

iλµM → Mfλfµ.

Locality: Compactness of Spec(A) (Theorem ??) implies that there
exist finitely many open sets {Ofj}

k
j=1 among Uλ such that ∪k

j=1Ofj =

Spec(A). In particular there exit elements {cj}
k
j=1 of A such that

(PU) c1f1 + c2f2 + · · ·+ ckfk = 1

holds.
Let m,n ∈ M be elements such that

ij(m) = ij(n) ( in Mfj .)

With the help of the “module version” of Lemma ??, we see that for
each j, there exist positive integers Nj such that

f
Nj

j (m− n) = 0

holds for all j ∈ {1, 2, 3, . . . , k}. Let us take the maximum N of {Nj}.
It is easy to see that

fN
j (m− n) = 0

holds for any j. On the other hand, taking (kN)-th power of the
equation (PU) above, we may find elements {aj} ⊂ A such that

a1f
N
1 + a2f

N
2 + · · ·+ akf

N
k = 1

holds. Then we compute

m− n = (a1f
N
1 + a2f

N
2 + · · ·+ akf

N
k )(m− n) = 0

to conclude that m = n.
Gluing lemma:
Let {mλ ∈ Mfλ} be given such that they satisfy

iλµ(mλ) = iλµ(mµ)

for any λ, µ. We fist choose a finite subcovering {Ofj = Uλj
}kj=1 of

{Uλ}. Then we may choose a positive integer N1 such that

mλj
= xj/f

N1

j (∃xj ∈ M)

holds for all j ∈ {1, 2, 3, . . . , k}.

ijl(xjf
N1

l ) = ijl(xlf
N
j )
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Then by the same argument which appears in the “locality” part, there
exists a positive integer N2 such that

(fifj)
N2(xjf

N1

l − xlf
N1

j ) = 0

holds for all j, l ∈ {1, 2, 3, . . . , k}. We rewrite the above equation as
follows.

(fN2

j xj)f
N2+N1

l − (fN2

l xl)f
N2+N1

j = 0.

On the other hand, by taking k(N1 + N2)-th power of the equation
(PU), we may see that there exist elements {bj} ∈ A such that

k
∑

j=1

bjf
N1+N2

j = 1

holds.
Now we put

n =
∑

j

bj(f
N2

j xj).

Then since for any l

(fN2

j xj) = (fN2

l xl)f
N2+N1

j /fN2+N1

l = fN2+N1

j mλl

holds on Ol, we have il(n) = mλl
.

Now, take any other open set Ofµ = Uµ from the covering {Uλ}.
{Ofj}

k
j=1 ∪ {Ofµ} is again a finite open covering of Spec(A). We thus

know from the argument above that there exists an element n1 of M
such that

ij(n1) = mfj , iµ(n1) = mµ.

From the locality, n1 coincides with n. In particular, iµ(n) = mµ holds.
This means n satisfies the requirement for the “glued object”.

�

Corollary 6.6. Let A be a commutative ring. Let B be a non-
commutative ring which contains A as a central subalgebra (that means,

Z(B) ⊃ A). Then there exists a sheaf B̃ of O-algebras over Spec(A)

6.2. Benefit of being a sheaf. By saying thatO is a sheaf on Spec(A),
we may easily use the arguments we have used to proved the locality
and the gluing lemma.
For example, the proof we gave in Theorem ??, especially the part

where we chose the idempotent p1, was a bit complicated.
Let us give another proof using the sheaf arguments. There exists

a unique element p ∈ A = O(Spec(A)) which coincides with 1 on
U1 = V (J) and with 0 on U2 = V (I). From the uniqueness we see that

p2 = p

holds since p2 satisfies the same properties as p. The rest of the proof
is the same.
As a second easier example, we consider the following undergraduate

problem.
Problem: Find the inverse of the matrix

(

3 5
1 2

)

.
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A student may compute (using “operations on rows”) as follows.
(

3 5 | 1 0
1 2 | 0 1

)

→

(

1 5/3 | 1/3 0
1 2 | 0 1

)

→

(

1 5/3 | 1/3 0
0 1/3 | −1/3 1

)

→

(

1 5/3 | 1/3 0
0 1 | −1 3

)

→

(

1 0 | 2 −5
0 1 | −1 3

)

The calculation is valid on Spec(Z[1/3]).
Another student may calculate (using “operations on columns”) as

follows.

(

3 5 | 1 0
1 2 | 0 1

)

→

(

3 5/2 | 1 0
1 1 | 0 1/2

)

→

(

1/2 5/2 | 1 0
0 1 | −1/2 1/2

)

→

(

1 5/2 | 2 0
0 1 | −1 1/2

)

→

(

1 1 | 2 −5
0 1 | −1 3

)

The calculation is valid on Spec(Z[1/2]). Of course, both calcu-
lations are valid on the intersection Spec(Z[1/2]) ∩ Spec(Z[1/3]) =
Spec(Z[1/6]).
The gluing lemma asserts that the answer obtained individually is

automatically an answer on the whole of Spec(Z). Of course, in this
special case, there are lots of easier ways to tell that. But one may
imagine this kind of thing is helpful when we deal with more compli-
cated objects.

6.3. homomorphisms of (pre)sheaves.

Definition 6.7. Let F1, F2 be presheaves of modules on a topolog-
ical space X . Then we say that a sheaf homomorphism

ϕ : F1 → F2

is given if we are given a module homomorphism

ϕU : F1(U) → F2(U)

for each open set U ⊂ X with the following property hold.

(1) For any open subsets V, U ⊂ X such that V ⊂ U , we have

ρV,U ◦ ϕU = ϕV ◦ ρV,U .

(The property is also commonly referred to as “ϕ commutes with re-
strictions”.)

Definition 6.8. A homomorphism of sheaves is defined as a homo-
morphism of presheaves.

6.4. example of presheaves and sheafication. To proceed our the-
ory further, we need to study a bit more about presheaves. Unfortu-
nately, a sheaf of modules M̃ on an affine schemes are “too good”.
Namely, in terms of cohomology (which we study later,) we have al-
ways

H i(Spec(A), M̃) = 0 (if i > 0).
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So to study some important problems on sheaf theory (which we will
sure to encounter when we deal with non-affine schemes,) we need to
study some examples from other mathematical areas.
A first example is a presheaf which satisfies the “locality” of sheaf

axiom, but which fails to obey “gluing lemma”.

Example 6.9. Let X = R be the (usual) real line with the usual
Lebesgue measure. Then we have a presheaf of L1-functions given by

L1(U) = {f : U → C; |f | is integrable}.

L1 is a presheaf which satisfies the “locality” of sheaf axiom, but which
fails to obey “gluing lemma”. Indeed, Let {Un = (−n, n)} be an open
covering of R and define a section fn on Un by

fn(x) = 1 (x ∈ Un).

Then we see immediately that {fn} is a family of sections which satisfies
the assumption of “gluing lemma”. The function which should appear
as the “glued function” is the constant function 1, which fails to be
integrable on the whole of R.
We may “sheaficate” the presheaf L1 above. Instead of L1-functions

we consider functions which are locally L1. Namely, for any open subset
U ⊂ R, we consider

L1
loc(U) =

{

f : U → C;
∀x ∈ U, ∃V (open in U) ∋ x

such that |f | is integrable on V

}

The presheaf so defined is a sheaf, which we may call “the sheaf of
locally L1-functions”.

Example 6.10. Similarly, we may consider a presheaf U 7→ Bdd(U)
of bounded functions on a topological space X . We may sheaficate
this example and the sheaf so created is the sheaf of locally bounded
functions.

Example 6.11. It is psychologically a bit difficult to give an example
of a presheaf which does not satisfy the locality axiom of a sheaf. But
there are in fact a lot of them.
For any differentiable (C∞) manifold X (students which are not fa-

miliar with the manifolds may take X as an open subset of Rn for an
example.), we define a presheaf G on X defined as follows

G(U) = C∞(U × U) = {complex valued C∞-functions on U × U}.

The restriction is defined in an obvious manner. It is an easy exercise
to see that the presheaf does not satisfy the locality axiom of a sheaf.
To sheaficate this, we first need to introduce an equivalence relation

on G(U).

f ∼ g ⇐⇒







there exists an open covering {Uλ} of U

such that ρUλ,Uf = ρUλ,Ug

for any λ.







Then we may easily see that

f ∼ g ⇐⇒







there exists an open neighborhood V of

the diagonal ∆U ⊂ U × U

such that f = g on V







holds.
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Then we define
F(U) = G(U)/ ∼ .

It is now an easy exercise again to verify that F so defined is a sheaf.
(Readers who are familiar with the theory of jets may notice that the
sheaf is related to the sheaf of jets. In other words, there is a sheaf
homomorphism from this sheaf to the sheaf of jets.)

6.5. sheafication of a sheaf. In the preceding subsection, we have
not been explained what “sheafication” really means. Here is the defi-
nition.

Lemma 6.12. Let G be a presheaf on a topological space X. Then
there exists a sheaf sheaf(G) and a presheaf morphism

ιG : G → sheaf(G)

such that the following property holds.

(1) If there is another sheaf F with a presheaf morphism

α : G → F,

then there exists a unique sheaf homomorphism

α̃ : sheaf(G) → F

such that
α = α̃ ◦ ιG

holds.

Furthermore, such sheaf(G), ιG is unique.

Definition 6.13. The sheaf sheaf(G) (together with ιG) is called the
sheafication of G.

The proof of Lemma 6.12 is divided in steps.
The first step is to know the uniqueness of such sheafication. It

is most easily done by using universality arguments. ([?] has a short
explanation on this topic.)
Then we divide the sheafication process in two steps.

Lemma 6.14. (First step of sheafication) Let G be a presheaf on a
topological space X. Then for each open set U ⊂ X, we may define a
equivalence relation on G(U) by

f ∼ g ⇐⇒







there exists an open covering {Uλ} of U

such that ρUλ,Uf = ρUλ,Ug

for any λ.







Then we define
G(1)(U) = G(U)/ ∼ .

Then G(1) is a presheaf that satisfies the locality axiom of a sheaf. There
is also a presheaf homomorphism from G to G(1). Furthermore, G(1) is
universal among such.

Lemma 6.15. (Second step of sheafication) Let G be a presheaf on a
topological space X which satisfies the locality axiom of a sheaf. Then
we define a presheaf G(2) in the following manner. First for any open
covering {Uλ} of an open set U ⊂ X, we define

G(2)(U ; {Uλ}) =

{

{rλ} ∈
∏

λ∈Λ

G(Uλ);
ρUλµ,Uµ

fµ = ρUλµ,Uλ
fλ

for any λ, µ ∈ Λ.

}
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Then we define
G(2)(U) = lim−→

{Uλ}

G(2)(U ; {Uλ})

Then we may see that G(2) is a sheaf and that there exists a homomor-
phism from G to G(2). Furthermore, G(2) is universal among such.

Proofs of the above two lemma are routine work and are left to the
reader.
Finish of the proof of Lemma 6.12: We put

sheaf(G) = ((G)(1))(2)

�

6.6. stalk of a presheaf.

Definition 6.16. Let G be a presheaf on a topological space X . Let
P ∈ X be a point. We define the stalk of G on P as

GP = lim−→
U∋P

G(U)

It should be noted at this stage that

Lemma 6.17. Let G be a presheaf on a topological space X. The
natural map

G → sheaf(G)

induces an isomorphism of stalk at each point x ∈ X.

6.7. kernels, cokernels, etc. on sheaves of modules. In this sub-
section we restrict ourselves to deal with sheaves of modules.
To shorten our statements, we call a presheaf which satisfies (only)

the sheaf axiom (1) (locality) a “(1)-presheaf”.

Lemma 6.18. Let ϕ : F → G be a homomorphism between sheaves of
modules. Then we have

(1) The presheaf kernel of ϕ is a sheaf. We call it the sheaf kernel
Ker(ϕ) of ϕ.

(2) The presheaf image of ϕ is not necessarily a sheaf, but it is a
(1)-presheaf. We call the sheafication of the presheaf image as
the sheaf image Image(ϕ) of ϕ.

(3) The presheaf cokernel of ϕ is not necessarily a sheaf. We call
the sheafication of the cokernel as the sheaf cokernel Coker(ϕ)
of ϕ.

Definition 6.19. A sequence of homomorphisms of sheaves of mod-
ules

F1
f1
→ F2

f2
→ F3

is said to be exact if Image(f1) = Ker(f2) holds.

Lemma 6.20. A sequence of homomorphisms of sheaves of modules

F1
f1
→ F2

f2
→ F3

is exact if and only if it is exact stalk wise, that means, if and only if
the sequence

(F1)P
f1
→ (F2)P

f2
→ (F3)P

is exact for all point P .


