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5.1. general localization of a commutative ring. We define a lo-
calization of a commutative ring in a more general situation than in
subsection ?7.

DEFINITION 5.1. Let A be a commutative ring. Let S be its subset.
We say that S is multiplicative if

(1)1e8
(2) z,ye S = wzyeS
holds.

DEFINITION 5.2. Let S be a multiplicative subset of a commutative
ring A. Then we define A[S™!] as

A{Xs; s € SH/({sXs —1;5 € S})

where in the above notation X is a indeterminate prepared for each
element s € S.) We denote by s a canonical map A — A[S™!].

LEMMA 5.3. Let S be a multiplicative subset of a commutative ring
A. Then the ring B = A[S™] is characterized by the following property:

Let C be a ring, ¢ : A — C be a ring homomorphism such that
©(s) is invertible in C for any s € S. Then there exists a unique ring
homomorphism ¢ = ¢[S™'| : B — C such that

p=1oLg
holds.

COROLLARY 5.4. Let S be a multiplicative subset of a commutative
ring A. Let I be an ideal of A given by

I ={xz € I;3s €8 such that sz = 0}
Then (1) I is an ideal of A. Let us put A = A/I, 7 : A — A the

canonical projection. Then:

(2) S =mw(S) is multiplicatively closed.

(8) We have

A~ = A[S7]

(4 g : A — A[S™Y is injective.

EXAMPLE 5.5. Ay = A[S™!] for S = {1, f, f%, 3, f*,... }. The total
ring of quotients Q(A) is defined as A[S™!] for

S = {x € A;z is not a zero divisor of A}.

When A is an integral domain, then Q(A) is the field of quotients of
A.

DEFINITION 5.6. Let A be a commutative ring. Let p be its prime
ideal. Then we define the localization of A with respect to p by

Ay =A[(A\p)7]
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5.2. general localization of modules.

DEFINITION 5.7. Let S be a multiplicative subset of a commutative
ring A. Let M be an A-module we may define S~'M as

{(m/s);m e M,s € S}/ ~
where the equivalence relation ~ is defined by
(ml/sl) ~ (mg/Sg) <~ t(m132 — m281> =0 (Ht € S)

We may introduce a S~!A-module structure on S~'M in an obvious
manner.

S~1M thus constructed satisfies an universality condition which the
reader may easily guess.

5.3. local rings.

DEFINITION 5.8. A commutative ring A is said to be a local ring if
it has only one maximal ideal.

ExXAMPLE 5.9. We give examples of local rings here.
e Any field is a local ring.
e For any commutative ring A and for any prime ideal p € Spec(A),
the localization A, is a local ring with the maximal ideal pA,.

LEMMA 5.10. (1) Let A be a local ring. Then the mazimal ideal
of A coincides with A\ A*.
(2) A commutative ring A is a local ring if and only if the set A\ A*
of non-units of A forms an ideal of A.

PROOF. (1) Assume A is a local ring with the maximal ideal m.
Then for any element f € A\ A%, an ideal I = fA+mis an ideal of A.
By Zorn’s lemma, we know that I is contained in a maximal ideal of
A. From the assumption, the maximal ideal should be m. Therefore,
we have

fACm
which shows that
A\ A Cm.
The converse inclusion being obvious (why?), we have
A\ A* =m.

(2) The “only if” part is an easy corollary of (1). The “if” part is also

easy.
O

COROLLARY 5.11. Let A be a commutative ring. Let p its prime
ideal. Then A, is a local ring with the only maximal ideal pA,.

PROPOSITION 5.12. Let A be a commutative ring. Let p € Spec(A)
then the stalk O, of O on p is isomorphic to A,.

DEFINITION 5.13. Let A, B be local rings with maximal ideals m 4, mp
respectively. A local homomorphism ¢ : A — B is a homomorphism
which preserves maximal ideals. That means, a homomorphism ¢ is
said to be local if

e~ (mp) =my



