next up previous
Next: The ring of -adic Up: , , and the Previous: Idempotents

Playing with idempotents in the ring of Witt vectors

DEFINITION 9.3   Let $ A$ be a commutative ring. For any $ a\in A$ , we denote by $ [a]$ the element of $ \mathcal W_1(A)$ defined as follows:

$\displaystyle [a]=(1-a T)_W
$

We call $ [a]$ the Teichmüller lift'' of $ a$

LEMMA 9.4   Let $ A$ be a commutative ring. Then:
  1. $ \mathcal W_1(A)$ is a commutative ring with the zero element $ [0]$ and the unity $ [1]$ .

  2. For any $ a,b \in A$ , we have

    $\displaystyle [a]\cdot [b]=[a b]
$

% latex2html id marker 1544
$ \qedsymbol$

PROPOSITION 9.5   Let $ p$ be a prime number. Let $ A$ be a ring of characteristic $ p$ . Then:
  1. If $ n$ is a positive integer which is not divisible by $ p$ , then $ n$ is invertible in $ \mathcal W_1(A)$ . To be more precise, we have

    $\displaystyle \frac{1}{n}\cdot [1]= \left( (1-T)^{\frac{1}{n}}\right)_W
= \left((1+\sum_{j=1}^\infty \binom{\frac{1}{n}}{j} (-T)^j \right)_W.
$

  2. $ p \cdot : \mathcal W_1(A)\to \mathcal W_1(A) $ is an injection.
  3. For any positive integer $ n$ which is not divisible by $ p$ , we define an element $ e_n$ as follows:

    $\displaystyle e_n=\frac{1}{n}\cdot (1-T^n)_W.
$

    Then:
    1. For any positive integer $ n$ , $ e_n$ is an idempotent.
    2. If $ n\vert m$ , then % latex2html id marker 1462
$ e_n \succeq e_m$ in the order of idempotents.

PROOF.. (1) follows from the next lemma. The rest is easy. % latex2html id marker 1464
$ \qedsymbol$

LEMMA 9.6   Let $ n$ be a positive integer. Let $ k$ be a non negative integer. Then we have always

$\displaystyle \binom{\frac{1}{n}}{k}\in \mathbb{Z}\left[\frac{1}{n}\right].
$

PROOF..

      $\displaystyle \binom{\frac{1}{n}}{k}\in \mathbb{Z}\left[\frac{1}{n}\right]$
    $\displaystyle =$ $\displaystyle \frac{\frac{1}{n}(\frac{1}{n}-1)\cdots (\frac{1}{n}-(k-1))}{k!}$
    $\displaystyle =$ $\displaystyle \frac{1}{n^k} \frac{(1(1-n)(1-2n)\dots (1-(k-1)n)}{k!}$

So the result follows from the next sublemma. % latex2html id marker 1478
$ \qedsymbol$

SUBLEMMA 9.7   Let $ n$ be a positive integer. Let $ k$ be a non negative integer. Let $ \{a_j\}_{j=1}^k\subset \mathbb{Z}$ be an arithmetic progression of common difference $ n$ . Then:
  1. For any positive integer $ m$ which is relatively prime to $ n$ , we have

    % latex2html id marker 1503
$\displaystyle \char93 \{j;\ m \vert a_j\ \} \geq \left\lfloor \frac{k}{m} \right\rfloor
$

  2. For any prime $ p$ which does not divide $ n$ , let us define

    $\displaystyle c_{k,p}=
\sum_{i=1}^\infty \lfloor \frac{k}{p^i}\rfloor
$

    (which is evidently a finite sum in practice.) Then

    $\displaystyle p^{c_{k,p}} \vert \prod_{j=1}^k a_j
$

  3. % latex2html id marker 1513
$\displaystyle p^{c_{k,p}}\vert k!,\qquad p^{c_{k,p}+1} \nmid k!
$

  4. $\displaystyle \frac{\prod_{j=1}^k a_j }{k!} \in \mathbb{Z}_{(p)}
$

PROOF.. (1) Let us put $ t=\lfloor\frac{k}{m}\rfloor$ . Then we divide the set of first $ kt$ -terms of the sequence $ \{a_j\}$ into disjoint sets in the following way.

      $\displaystyle S_0=\{a_1,a_2,\dots, a_m\},$
      $\displaystyle S_1=\{a_{m+1},a_{m+2},a_{m+m}\},$
      $\displaystyle S_2=\{a_{2m+1},a_{2m+2},a_{2m+m}\},$
      $\displaystyle \dots$
      $\displaystyle S_{t-1}=\{a_{(t-1)m+1},a_{(t-1)m+2},\dots, a_{(t-1)m+m}\}$

Since $ m$ is coprime to $ n$ , we see that each of the $ S_u$ gives a complete representative of $ \mathbb{Z}/n\mathbb{Z}$ .

(2): Apply (1) to the cases where $ m=p,p^2,p^3,\dots$ and count the powers of $ p$ which appear in $ \prod a_j$ .

(3): Easy. (4) is a direct consequence of (2),(3). % latex2html id marker 1517
$ \qedsymbol$

ARRAY(0x35ebcd0)


next up previous
Next: The ring of -adic Up: , , and the Previous: Idempotents
docky 2016-06-18