next up previous
Next: About this document ...

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{11. regular element}

DEFINITION 11.1   Let $ A$ be a commutative ring. Let $ M$ be an $ A$ -module. An element $ x\in A$ is said to be $ M$ -regular if

$\displaystyle 0 \to M \overset{x\times}{\to} M
$

is exact.

PROPOSITION 11.2   Let $ A$ be a ring, $ M,N$ two $ A$ -modules, and $ x\in A$ . Suppose that $ x$ is both $ A$ -regular and $ M$ -regular, and that $ xN=0$ . Set $ B=A/x A$ and $ \bar M=M/xM$ . Then:
  1. $ \operatorname{Tor}^A_n(M,B)=0$ for all $ n>0$ .

  2. $ \operatorname{Ext}_A^n(M,N)\cong \operatorname{Ext}_B^n (\bar M, N)$ for all % latex2html id marker 598
$ n\geq 0$ .
  3. $ \operatorname{Tor}^A_n(M,N)\cong \operatorname{Tor}^B_n (\bar M, N)$ for all % latex2html id marker 602
$ n\geq 0$ .



2012-07-27