next up previous
Next: About this document ...

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{09. Ext, Tor}

Let $ \mathcal{C}$ be an abelian category. For any object $ M$ of $ \mathcal{C}$ , the extension group $ \operatorname{Ext}^j_\mathcal{C}(M,N)$ is defined to be the derived functor of the ``hom'' functor

$\displaystyle N\mapsto \operatorname{Hom}_\mathcal{C}(M,N).
$

We note that the $ \operatorname{Hom}$ functor is a ``bifunctor''. We may thus consider the right derived functor of $ \bullet \mapsto \operatorname{Hom}(\bullet,N)$ and that of $ \bullet \mapsto \operatorname{Hom}(M,\bullet,N)$ . Fortunately, both coincide: The extension group $ \operatorname{Ext}^\bullet_\mathcal{C}(M,N)$ may be calculated by using either an injective resolution of the second variable $ N$ or a projective resoltuion of the first variable $ M$ .

EXAMPLE 09.1   Let us compute the extension groups $ \operatorname{Ext}^j_\mathbb{Z}(\mathbb{Z}/36\mathbb{Z}, \mathbb{Z}/108\mathbb{Z})$ .
  1. We may compute them by using an injective resolution

    $\displaystyle 0 \to \mathbb{Z}/108\mathbb{Z}\to \mathbb{Q}/108\mathbb{Z}\to \mathbb{Q}/\mathbb{Z}\to 0
$

    of $ \mathbb{Z}/108\mathbb{Z}$ .
  2. We may compute them by using a free resolution

    $\displaystyle 0 \leftarrow \mathbb{Z}/36\mathbb{Z}\leftarrow \mathbb{Z}\leftarrow 36 \mathbb{Z}\leftarrow 0
$

    of $ \mathbb{Z}/36 \mathbb{Z}$ .

EXERCISE 09.1   Compute an extension group $ \operatorname{Ext}^j(M,N)$ for modules $ M,N$ of your choice. (Please choose a non-trivial example).


DEFINITION 09.2   Let $ A$ be an associative unital (but not necessarily commutative) ring. Let $ L$ be a right $ A$ -module. Let $ M$ be a left $ A$ -module. For any ( $ \mathbb{Z}$ -)module $ N$ , an map

$\displaystyle \varphi: L\times M \to N
$

is called an $ A$ -balanced biadditive map if
  1. $ \varphi(x_1+x_2,y)=\varphi(x_1,y)+\varphi(x_2,y)$      $ (\forall x_1,\forall x_2\in L, \forall y\in M)$ .
  2. $ \varphi(x,y_1+y_2)=\varphi(x,y_1)+\varphi(x,y_2)$      $ (\forall x\in L, \forall y_1,\forall y_2\in M)$ .
  3. $ \varphi(x a, y)=\varphi(x, a y)$      $ (\forall x\in L, \forall y\in M, \forall a\in A)$ .

PROPOSITION 09.3   Let $ A$ be an associative unital (but not necessarily commutative) ring. Then for any right $ A$ -module $ L$ and for any left $ A$ -module $ M$ , there exists a ( $ \mathbb{Z}$ -)module $ X_{L,M}$ together with a $ A$ -balanced map

$\displaystyle \varphi_0: L\times M \to X_{L,M}
$

which is universal amoung $ A$ -balanced maps.

DEFINITION 09.4   We employ the assumption of the proposition above. By a standard argument on universal objects, we see that such object is unique up to a unique isomorphism. We call it the tensor product of $ L$ and $ M$ and denote it by

$\displaystyle L\otimes_A M.
$

LEMMA 09.5   Let $ A$ be an associative unital ring. Then:
  1. $ A\otimes_A M \cong M$ .
  2. $ (L_1\oplus L_2) \otimes_A M
\cong
(L_1 \otimes M) \oplus (L_2 \otimes_A M ).
$
  3. For any $ M$ , $ L\mapsto L \otimes_A M$ is a right exact functor.
  4. For any right ideal $ J$ of $ A$ and for any $ A$ -module $ M$ , we have

    $\displaystyle (A/J) \otimes_A M \cong M/ J.M
$

In particular, if the ring $ A$ is commutative, then for any ideals $ I,J$ of $ A$ , we have

$\displaystyle (A/I) \otimes_A (A/J) \cong A/ (I+ J)
$

DEFINITION 09.6   For any left $ A$ -module $ M$ , the left derived functor $ L_j F(M)$ of $ F_M=\bullet \otimes_A M$ is called the Tor functor and denoted by $ \operatorname{Tor}^A_j(\bullet,M)$ .

By definition, $ \operatorname{Tor}^A_j(L,M)$ may be computed by using projective resolutions of $ L$ .

EXERCISE 09.2   Compute $ \operatorname{Tor}_j^\mathbb{Z}(\mathbb{Z}/n \mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ for $ n,m\in \mathbb{Z}_{>0}$ .


next up previous
Next: About this document ...
2012-06-28