next up previous
Next: About this document ...

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{06. Length, Hilbert function, Samuel function}

LEMMA 06.1 (Artin-Rees)   Let $ I$ be an ideal of a Noetherian ring $ A$ . Let $ M$ be an $ A$ module with a submodule $ N$ . Then there exists an integer $ c>0$ such that

$\displaystyle I^n M \cap N = I^{n-c}(I^c M \cap N)
$

holds for all $ n>c$ .

THEOREM 06.2 (Krull)   Let $ A$ be a ring with an ideal $ I$ . Let $ M$ be a finite $ A$ -module. We set $ N=\cap_{k=1}^\infty I^k M$ . Then there exists $ a\in A$ such that % latex2html id marker 682
$ a \equiv 1 \mod I$ and $ a N=0$ .

THEOREM 06.3 (the Krull intersection theorem)   Let $ A$ be a Noetherian ring.
  1. If $ I$ is in the Jacobson radical $ \operatorname{rad} A$ of $ A$ , then for any finite $ A$ -module $ M$ , we have $ \cap_n I^n M=0$ . Furthermore, for any submodule $ N$ of $ M$ , we have $ \cap_n I^n M \cap N=0$ .
  2. If $ A$ is an integral domain and $ I$ is a proper ideal of $ A$ , then we have $ \cap_n I^n=0$ .

PROPOSITION 06.4   Let $ A$ be a local ring. The following conditions are equivalent:
  1. $ l(A)< \infty$ (which is also equivalent to saying that $ d(A)=0$ or that $ \delta(A)=0$ ).
  2. $ \dim(A)=0$ .
  3. Any descending chain

    $\displaystyle I_0\supset I_1 \supset I_2 \supset \dots
$

    of ideals of $ A$ stops.

LEMMA 06.5   Let $ A$ be a ring with an ideal $ I$ . Let $ M$ be an $ A/I$ -module. then we may (of course) consider $ M$ as an $ A$ -module. The dimensions $ \dim(M),d(M),\delta(M)$ are irrelevant of whether we consider $ M$ as an $ A/I$ -module or as an $ A$ -module.

LEMMA 06.6   Let $ 0\to M' \to M\to M''\to 0$ be an exact sequence of finite $ A$ -modules over a Noetherian local ring $ A$ . Then:
  1. $ d(M)=\max(d(M'),d(M''))$ .
  2. For any ideal $ I$ of definition of $ A$ , The leading coefficient of $ \chi_M^I-\chi_{M''}^I$ coincides with that of $ \chi_{M'}^I$ .

THEOREM 06.7   Let $ (A,\mathfrak{m})$ be a $ d$ -dimensional regular local ring with the residue field $ k=A/\mathfrak{m}$ . Then

$\displaystyle \operatorname{gr}_{\mathfrak{m}}(A)\cong k[X_1,\dots, X_d].
$


next up previous
Next: About this document ...
2012-06-08