next up previous
Next: About this document ...

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{03. Algebraic geometry of affine schemes}

DEFINITION 03.1   For any commutative ring $ A$ , we define its spectrum as

$\displaystyle \operatorname{Spec}(A)=\{ \mathfrak{p}\subset A; \mathfrak{p}$ is a prime ideal of $A$$\displaystyle .
$

For any subset $ S$ of $ A$ we define

$\displaystyle V(S)=V_{\operatorname{Spec}A} (S) =\{\mathfrak{p}\in \operatorname{Spec}A; \mathfrak{p}\supset S\}
$

Then we may topologize $ \operatorname{Spec}(A)$ in such a way that the closed sets are sets of the form $ V(S)$ for some $ S$ . Namely,

$\displaystyle F:$closed$\displaystyle  \iff  \exists S \subset A ( F=V(S) )
$

We refer to the topology as the Zariski topology.

LEMMA 03.2   For any ring $ A$ , the following facts holds.
  1. For any subset $ S$ of $ A$ , we have

    $\displaystyle V(S)=\bigcap_{s \in S} V(\{s\}).
$

  2. For any subset $ S$ of $ A$ , let us denote by $ \langle S \rangle$ the ideal of $ A$ generated by $ S$ . then we have

    $\displaystyle V(S)=V(\langle S \rangle)
$

PROPOSITION 03.3   For any ring homomorphism $ \varphi: A \to B$ , we have a map

$\displaystyle \operatorname{Spec}(\varphi): \operatorname{Spec}(B) \ni \mathfrak{p}\mapsto \varphi^{-1}(\mathfrak{p})\in \operatorname{Spec}(A).
$

It is continuous with respect to the Zariski topology.

PROPOSITION 03.4   For any ring $ A$ , the following statements hold.
  1. For any ideal $ I$ of $ A$ , let us denote by $ \pi_I :A\to A/I$ the canonical projection. Then $ \operatorname{Spec}(\pi_I)$ gives a homeomorphism between $ \operatorname{Spec}(A/I)$ and $ V_{\operatorname{Spec}A}(I)$ .
  2. For any element $ s$ of $ A$ , let us denote by $ \iota_s: A \to A[s^{-1}]$ be the canonical map. Then $ \operatorname{Spec}(\iota_s)$ gives a homeomorphism between $ \operatorname{Spec}(A[s^{-1}])$ and $ \complement V_{\operatorname{Spec}_A}(\{s\})$ .

PROPOSITION 03.5   Let $ A,B$ be a ring. Let $ \varphi: A \to B$ be a ring homomoprhism. We regard $ B$ as an $ A$ module via $ \varphi.$ If $ B$ is a finite $ A$ -module, then

$\displaystyle \operatorname{Spec}(\varphi): \operatorname{Spec}(B)\to \operatorname{Spec}(A)
$

is a closed map with respect to the Zariski topology.

DEFINITION 03.6   Let $ X$ be a topological space. A closed set $ F$ of $ X$ is said to be reducible if there exist closed sets $ F_1$ and $ F_2$ such that

% latex2html id marker 883
$\displaystyle F=F_1 \cup F_2,\quad F_1\neq F, F_2 \neq F
$

holds. $ F$ is said to be irreducible if it is not reducible.

DEFINITION 03.7   Let $ I$ be an ideal of a ring $ A$ . Then we define its radical to be

% latex2html id marker 896
$\displaystyle \sqrt{I}=\{ x \in A; \exists N\in \mathbb{Z}_{>0}$    such that $\displaystyle x^N \in I\}.
$

PROPOSITION 03.8   Let $ A$ be a ring. Then;
  1. For any ideal $ I$ of $ A$ , we have % latex2html id marker 910
$ V(I)=V(\sqrt{I})$ .
  2. For two ideals $ I$ , $ J$ of $ A$ , $ V(I)=V(J)$ holds if and only if % latex2html id marker 920
$ \sqrt{I}=\sqrt{J}$ .
  3. For an ideal $ I$ of $ A$ , $ V(I)$ is irreducible if and only if % latex2html id marker 928
$ \sqrt{I}$ is a prime ideal.

DEFINITION 03.9   We define a dimension of a topological space $ X$ as a supremum of the length of sequences

% latex2html id marker 937
$\displaystyle Y_1 \supsetneq Y_2 \supsetneq Y_3 \supsetneq \dots \supsetneq Y_s
$

of irreducible subsets of $ X$ .

We define the Krull dimension of a ring $ A$ as the dimension of $ \operatorname{Spec}(A)$ .


next up previous
Next: About this document ...
2014-04-25