next up previous
Next: About this document ...

    

��ʬ��ʬ�س���AI���� No.9

\fbox{´Ø¿ô¤Î¶Ë¸ÂÃÍ}

���� 9.1 (�Ʒ�)   [``���ʽ����� 10''] �˸� $ \lim_{x\to x_0} f(x)$ �� $ \lim_{x\to x_0} g(x) $ ���Ȥ�� ¸�ߤ���Ȳ��ꤹ�롣���ΤȤ������Τ��Ȥ�����Ω�ġ�
  1. $ \displaystyle
\lim_{x\to x_0} (f(x) \pm g(x))
=\lim_{x\to x_0} f(x) \pm \lim_{x\to x_0} g(x). $
  2. $ \displaystyle \lim_{x\to x_0} c f(x)= c \lim_{x\to x_0} f(x)$ .
  3. $ \displaystyle
\lim_{x\to x_0} (f(x) g(x))
=\left(\lim_{x \to x_0} f(x)\right) \left( \lim_{x\to x_0} g(x) \right).
$
  4. ����ˡ� % latex2html id marker 699
$ \lim_{x\to x_0} f(x) \neq 0$ �Ȳ��ꤹ��ȡ�

    $\displaystyle \lim_{x\to x_0} (g(x)/ f(x))
=\left(\lim_{x\to x_0} g(x)\right)/ \left( \lim_{x\to x_0} f(x) \right).
$

����μ�«�ȴؿ��μ�«�ˤϼ��Τ褦�ʴط������롣

���� 9.2   $ x_0$ �ζ᤯��������줿�ؿ� $ f$ �ˤ������ơ� ���Τ��Ȥ�Ʊ�ͤǤ��롣
  1. $ f$ �� $ x\to x_0$ �Ǥζ˸¤�¸�ߤ��롣
  2. $ a_n \to x_0$ �ǡ� % latex2html id marker 718
$ a_n \neq x_0 (\forall n)$ �ʤ�Ǥ�դο��� $ \{ a_n\}_{n=1}^\infty$ �ˤ������ơ� $ \{f(a_n)\}_{n=1}^\infty$ �Ϥ����ͤ˼�«���롣

���� 9.1   ���ο� $ \epsilon>0$ ��Ϳ�����Ƥ���Ȥ��롣 ���ΤȤ��� ���Τ褦�� ���ο� $ \delta$ �ò¸«¤Ä¤ï¿½ï¿½Ê¤ï¿½ï¿½ï¿½ï¿½ï¿½

% latex2html id marker 733
$\displaystyle \forall b \left(
\vert b-5\vert<\delt...
...text{ and }
\left\vert\frac{1}{b}-\frac{1}{5} \right\vert <\epsilon
)
\right)
$



2011-06-09