next up previous
Next: About this document ...

Commutative algebra

Yoshifumi Tsuchimoto

\fbox{03. Derivations and differentials}

DEFINITION 03.1   Let $ A$ be a ring. A ring $ B$ is called an $ A$ -algebra if there is given a distinguished ring homomorphism (which is called the structure morphism) from $ A$ to $ B$ .

DEFINITION 03.2   Let $ A$ be a commutative ring. Let $ B$ be an $ A$ -algebra. Let $ M$ be an $ B$ -module. A map $ D:A\to M$ is called an $ A$ -derivation if it satisfies the following conditions.
  1. $ D$ is $ A$ -linear.
  2. % latex2html id marker 599
$ D(x y)=x D(y)+ D(x) y \qquad (\forall x ,\forall y \in B)$ .

PROPOSITION 03.3   For any algebra $ B$ over a ring $ A$ , There exists an universal derivation $ d:B\to \Omega^1_{B/A}$ .

DEFINITION 03.4   The module $ \Omega^1_{B/A}$ is called the module of differentials of $ B$ over $ A$ .

DEFINITION 03.5   An algebra $ B$ over a ring $ A$ is called unramified over $ A$ if $ \Omega^1_{B/A}=0$ . $ B$ is called étale over $ A$ if it is unramified and flat.

LEMMA 03.6   Let $ A$ be a commutative ring. Let $ S$ be its multiplicative subset. Then $ S^{-1}A$ is étale over $ A$ .


next up previous
Next: About this document ...
2011-05-20