next up previous
Next: Bibliography

Cohomologies.

Yoshifumi Tsuchimoto

\fbox{05. projective and injective modules}

DEFINITION 05.1   A (covariant) functor $ F$ from a category $ \mathcal C$ to a category $ \mathcal D$ consists of the following data:
  1. An function which assigns to each object $ C$ of $ \mathcal C$ an object $ F(C)$ of $ \mathcal D$ .
  2. An function which assigns to each morphism $ f$ of $ \mathcal C$ an morphism $ F(f)$ of $ \mathcal D$ .
The data must satisfy the following axioms:
functor-1.
$ F(1_C)=1_{F(C)}$ for any object $ C$ of $ \mathcal C$ .
functor-2.
$ F(f\circ g)=F(f)\circ F(g)$ for any composable morphisms $ f,g$ of $ \mathcal C$ .

By employing the following axiom instead of the axiom (functor-2) above, we obtain a definition of a contravariant functor:

(functor-$ 2'$ ) $ F(f\circ g)=F(g)\circ F(f)$ for any composable morphisms

DEFINITION 05.2   Let $ F: \mathcal{C}_1 \to \mathcal{C}_2$ be a functor between additive categories. We call $ F$ additive if for any objects $ M, N$ in $ \mathcal{C}_1$ ,

$\displaystyle \operatorname{Hom}(M,N)\to \operatorname{Hom}(F(M),F(N))
$

is additive.

DEFINITION 05.3   Let $ F$ be an additive functor from an abelian category $ \mathcal{C}_1$ to $ \mathcal{C}_2$ .
  1. $ F$ is said to be left exact (respectively, right exact ) if for any exact sequence

    $\displaystyle 0 \to L\to M\to N\to 0,
$

    the corresponding map

    $\displaystyle 0\to F(L)\to F(M)\to F(N)
$

    (respectively,

    $\displaystyle F(L)\to F(M)\to F(N) \to 0)
$

    is exact
  2. $ F$ is said to be exact if it is both left exact and right exact.

LEMMA 05.4   Let $ R$ be a (unital associative but not necessarily commutative) ring. Then for any $ R$ -module $ M$ , the following conditions are equivalent.
  1. $ M$ is a direct summand of free modules.
  2. $ M$ is projective

COROLLARY 05.5   For any ring $ R$ , the category $ (R \operatorname{-modules})$ of $ R$ -modules have enough projectives. That means, for any object $ M \in (R\operatorname{-modules})$ , there exists a projective object $ P$ and a surjective morphism $ f: P \to M$ .

DEFINITION 05.6   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is surjective.

DEFINITION 05.7   Let $ R$ be a commutative ring. We assume $ R$ is a domain (that means, $ R$ has no zero-divisors except for 0 .)

An $ R$ -module $ M$ is said to be divisible if for any $ r \in R\setminus \{0\}$ , the multplication map

$\displaystyle M \overset{r \times }{\to} M
$

is epic.

DEFINITION 05.8   Let $ (K^\bullet,d_K)$ , $ (L^\bullet, d_L)$ be complexes of objects of an additive category $ \mathcal{C}$ .
  1. A morphism of complex $ u:K^\bullet \to L^\bullet$ is a family

    $\displaystyle u^j: K^j \to L^j
$

    of morphisms in $ \mathcal{C}$ such that $ u$ commutes with $ d$ . That means,

    $\displaystyle u^{j+1} \circ d^j_K = d^j_K \circ u^j
$

    holds.
  2. A homotopy between two morphisms $ u,v: K^\bullet \to L\bullet$ of complexes is a family of morphisms

    $\displaystyle h^j: K^j \to L^{j-1}
$

    such that $ u-v = d \circ h + h \circ d$ holds.

LEMMA 05.9   Let $ \mathcal{C}$ be an abelian category that has enough injectives. Then:
  1. For any object $ M$ in $ \mathcal{C}$ , there exists an injective resolution of $ M$ . That means, there exists an complex $ I^\bullet$ and a morphism $ \iota_M:M \to I^0$ such that

    \begin{displaymath}
% latex2html id marker 1010H^j(I^\bullet)
=
\begin{cases}
...
...iota_M) &\text{ if } j=0 \\
0 &\text{ if } j\neq 0
\end{cases}\end{displaymath}

  2. For any morphism $ f:M\to N$ of $ \mathcal{C}$ , and for any injective resolutions $ (I^\bullet,\iota_M)$ , $ (J^\bullet,\iota_N)$ of $ M$ and $ N$ (respectively), There exists a morphism $ \bar f:I^\bullet \to J^\bullet$ of complexes which commutes with $ f$ . Forthermore, if there are two such morphisms $ \bar f$ and $ f'$ , then the two are homotopic.

DEFINITION 05.10   Let $ \mathcal{C}_1$ be an abelian category which has enough injectives. Let $ F: \mathcal{C}_1 \to \mathcal{C}_2$ be a left exact functor to an abelian category. Then for any object $ M$ of $ \mathcal{C}_1$ we take an injective resolution $ I^\bullet_M$ of $ M$ and define

$\displaystyle R^i F(M)=H^i(I^\bullet_M).
$

and call it the derived functor of $ F$ .

LEMMA 05.11   The derived functor is indeed a functor.


next up previous
Next: Bibliography
2010-05-27