next up previous
Next: Bibliography

Categories, abelian categories and cohomologies.

Yoshifumi Tsuchimoto

% latex2html id marker 733
\fbox{Generalities on categories and definition of abelian categories}

Our treatment here is a (rather strange) mixture of [2],[1]

DEFINITION 03.1   Let $ F,G$ be two functors from a category $ \mathcal{C}$ to a category $ \mathcal D$ . A morphism of functros from $ F$ to $ G$ is a family of morphisms in $ \mathcal D$ :

$\displaystyle f(X):F(X)\to G(X)
$

one for each $ X \in \operatorname{Ob}(\mathcal{C})$ , satisfying the following condition: for any morphism $ \varphi:X\to Y$ in $ \mathcal{C}$ , the diagram

$\displaystyle \begin{CD}
F(X) @>f(X) >> G(X) \\
@V F(\varphi) VV @V G(\varphi) VV \\
F(X) @> f(X) >> G(Y)
\end{CD}$

is commutative.

DEFINITION 03.2   Let $ \mathcal{C}$ be a category, $ X,Y$ be objects of $ \mathcal{C}$ . Then an morphism $ a\in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ is an isomorphism in $ \mathcal{C}$ if there exists $ b \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$ such that the relations

% latex2html id marker 877
$\displaystyle a b= 1_Y \qquad b a= 1_X
$

hold. Objects $ X,Y$ in a category $ \mathcal{C}$ are said to be isomorphic if there exists at least one isomorphism between them.

Note that by combining the above two definitions, we obtain a definition of a notion of isomorphisms of functors.

DEFINITION 03.3   A functior $ F:\mathcal{C}\to \mathcal D$ is said to be an equivalene of category if there exists a functor $ G: \mathcal D \to \mathcal{C}$ such that the functor $ G F$ is isomorphic to $ \operatorname{Id}_{\mathcal{C}} $ , and the functor $ F G$ is isomorphic to $ \operatorname{Id}_{\mathcal D}$ . If such a thing exists, we say that the two categories are equivalent.

DEFINITION 03.4   Let $ \mathcal{C}$ be a category. Then:
  1. $ s$ : initial $ \overset{\operatorname{def}}{\iff}$ % latex2html id marker 911
$ (\forall a\in \operatorname{Ob}(\mathcal{C}) \quad(\char93  \operatorname{Hom}_{\mathcal{C}}(s,a)=1))$ .
  2. $ t$ : terminal $ \overset{\operatorname{def}}{\iff}$ % latex2html id marker 917
$ (\forall a\in \operatorname{Ob}(\mathcal{C}) \quad(\char93  \operatorname{Hom}_{\mathcal{C}}(a,t)=1))$ .
  3. $ n$ : null $ \overset{\operatorname{def}}{\iff}$ ($ n$ : initial and $ n$ :terminal)

DEFINITION 03.5   An category $ \mathcal{C}$ is an additive category if it satisfies the following axioms:
A1.
Any set $ \operatorname{Hom}_{\mathcal{C}}(X,Y)$ is an additive group. The composition of morphisms is bi-additive.
A2.
There exists a null object $ 0\in \operatorname{Ob}(\mathcal{C})$ .
A3.
For any objects $ X,Y\in \operatorname{Ob}(\mathcal{C})$ , there exists a biproduct of $ X,Y$ . Namely, there exists a diagram

$\displaystyle X
\stackrel
{ \overset{p_1}{\longleftarrow} }
{\underset{i_1}{\l...
...tackrel
{ \overset{p_2}{\longrightarrow} }
{\underset{i_2}{\longleftarrow}}
Y
$

in $ \mathcal{C}$ such that

% latex2html id marker 946
$\displaystyle p_1 i_1=1_X , \quad
p_2 i_2=1_Y ,\quad
i_1 p_1 +i_2 p_2=1_Z
$

holds.

DEFINITION 03.6   Let $ \mathcal{C}$ be a category, $ X,Y\in \operatorname{Ob}(\mathcal{C})$ , adn $ f,g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ . An equalizer $ k$ of $ f,g$ is an arrow $ K\to X$ in $ \mathcal{C}$ which satisfies the following properties:
  1. $ f\circ k=g\circ k$ .
  2. $ k$ is ``universal'' amoung morphisms which satisfies (1). In other words, if $ m: M\to X$ is a morphism in $ \mathcal{C}$ such that $ f \circ m=g \circ m$ , then there exists a unique arrow $ h: M\to K$ in $ \mathcal{C}$ which satisfy

    $\displaystyle m=k\circ h.
$

By reversing the directions of arrows above, one may define the notion of coequalizers

DEFINITION 03.7   Let $ \mathcal{C}$ be an additive category. Then the equalizer (respectively, coequalizer) of an arrow $ f:X\to Y$ and $ 0: X\to Y$ is called the kernel (respectively, cokernel) of $ f$ .

DEFINITION 03.8   An additive category $ \mathcal{C}$ is said to be abelian if it satisfies the following axioms.
A4-1.
Every morphism $ f:X\to Y$ in $ \mathcal{C}$ has a kernel $ \ker(f):\operatorname{Ker}(f)\to X$ .
A4-2.
Every morphism $ f:X\to Y$ in $ \mathcal{C}$ has a cokernel $ \operatorname{coker}(f):Y\to \operatorname{Coker}(f)$ .
A4-3.
For any given morphism $ f:X\to Y$ , we have a suitably defined isomorphism

$\displaystyle l: \operatorname{Coker}(\ker(f))\cong \operatorname{Ker}(\operatorname{coker}(f))
$

in $ \mathcal{C}$ . More precisely, $ l$ is a morphism which is defined by the following relations:

% latex2html id marker 1023
$\displaystyle \ker(\operatorname{coker}(f))\circ \...
...exists \overline{f}),\quad
\overline{f}=l \circ \operatorname{coker}(\ker(f)).
$


next up previous
Next: Bibliography
2009-05-15