next up previous
Next: About this document ...

    

��ʬ��ʬ�س���AI�ͽ������

(Ʊ�����꤬�Ǥ�櫓�ǤϤ���ޤ��󡣼ºݤ�����Ϥ����� �����񤷤��Ǥ��礦��)

���� 14.1   $ f(x)=x^3+3x^2-5x+7$ �Ȥ����� ���ο� $ \epsilon$ �ȼ¿� $ a$ ��Ϳ����줿�Ȥ���Ȥ���

$\displaystyle \vert x-a\vert<\delta  \implies  \vert f(x)-f(a)\vert<\epsilon
$

��ߤ��� $ \delta>0$ ���ĵ󤲡��ºݤˤ��� $ \delta$ �� �嵭�����������������Ȥ򼨤��ʤ�����

(����)

$\displaystyle \delta=\min(1,\frac{\epsilon}{ (3 \vert a\vert^2+9\vert a\vert+9)})
$

���֤����ɤ��� �ºݡ����ΤȤ��� $ x-a=h$ �Ȥ����ơ�

$\displaystyle \vert h\vert=\vert x-a\vert<\delta
$

�Ȥ����

  $\displaystyle \vert h\vert<1,$ (��)
  $\displaystyle (3 \vert a\vert^2+9\vert a\vert+9)\vert h\vert<\epsilon.$ (��)

���ʤꤿ�ġ������ (��)����

% latex2html id marker 765
$\displaystyle \vert h\vert \geq \vert h\vert^2 \geq \vert h\vert^3.$ (��)

���ʤꤿ�ġ� ���������դ��� $ \vert f(x)-f(a)\vert$ �򲼤Τ褦��ɾ��������ɤ���

  $\displaystyle \vert f(x)-f(a)\vert$    
$\displaystyle =$ $\displaystyle \vert(a+h)^3+3(a+h)^2-5(a+h)+7-(a^3+3 a -5 a +7)\vert$    
$\displaystyle =$ $\displaystyle \vert 3 a ^2 h + 3 a h^2 + h^3 +6 a h + 3 h^2 -5 h\vert$    
% latex2html id marker 773
$\displaystyle \leq$ % latex2html id marker 774
$\displaystyle \vert 3 a ^2 h\vert +\vert 3 a h^2\vert + \vert h^3\vert +\vert 6 a h\vert + \vert 3 h^2\vert + \vert 5 h\vert\qquad$    
% latex2html id marker 775
$\displaystyle \underset{\text{(¤¦)}}{\leq}$ % latex2html id marker 776
$\displaystyle \vert 3 a ^2\vert \vert h\vert +\vert...
...ert h\vert +\vert 6 a\vert \vert h\vert + 3 \vert h\vert + 5 \vert h\vert\qquad$    
$\displaystyle =$ $\displaystyle (3 \vert a\vert^2+9\vert a\vert+9 ) \vert h\vert \underset{\text{(¤¤)}}{<}\epsilon$    

% latex2html id marker 835
$ \qedsymbol$

(ȯŸ) ��� $ f$ �� $ \mbox{${\mathbb{R}}$}$ �ǰ���Ϣ³�ǤϤʤ����Ȥ򼨤��ʤ�����

���� 14.2   $ f(x)=\frac{1}{x^2}$ �Ȥ����� $ \epsilon>0$ ��Ϳ����줿�Ȥ���Ȥ���

$\displaystyle \vert x-10\vert<\delta \ \implies\ \ \vert f(x)-f(10)\vert<\epsilon
$

��ߤ��� $ \delta>0$ ���ĵ󤲡��ºݤˤ��� $ \delta$ �� �嵭�����������������Ȥ򼨤��ʤ�����

(����)

$\displaystyle \delta=\min(1,\epsilon)
$

�Ȥ����Ф褤�� �ºݡ����ΤȤ��� $ x-10=h$ �Ȥ����ơ�

$\displaystyle \vert h\vert=\vert x-10\vert<\delta
$

�Ȥ����

  $\displaystyle \vert h\vert<1,$ (��)
  $\displaystyle \vert h\vert<\epsilon.$ (��)

���ʤꤿ�ġ������ (��)����

% latex2html id marker 807
$\displaystyle \vert h\vert \geq \vert h\vert^2 ,$ (��)

% latex2html id marker 809
$\displaystyle \vert(10+h)\vert\underset{\text{»°³ÑÉÔÅù¼°}}{\geq} 10-\vert h\vert \underset{\text{(¤¢)}}{ \geq} 9.$ (��)

���ʤꤿ�ġ����������դ��� $ \vert f(10+h)-f(10)\vert$ �򲼤Τ褦��ɾ��������ɤ���

  $\displaystyle \vert f(10+h)-f(10)\vert$    
$\displaystyle =$ $\displaystyle \left\vert\frac{1}{(10+h)^2}-\frac{1}{10^2}\right\vert$    
$\displaystyle =$ $\displaystyle \left\vert\frac{10^2-(10+h)^2}{10^2 (10+h)^2}\right\vert$    
$\displaystyle =$ $\displaystyle \left\vert\frac{-20 h - h^2}{10^2 (10+h)^2}\right\vert$    
$\displaystyle =$ $\displaystyle \left\vert\frac{1}{10^2 (10+h)^2}\right\vert\cdot \vert 20 h+h^2\vert$    
% latex2html id marker 821
$\displaystyle \leq$ % latex2html id marker 822
$\displaystyle \left\vert\frac{1}{10^2 (10+h)^2}\right\vert\cdot( \vert 20 h\vert+\vert h^2\vert) \qquad($����������$\displaystyle )$    
% latex2html id marker 824
$\displaystyle \underset{\text{(¤¦)}}{\leq}$ $\displaystyle \left\vert\frac{1}{10^2 (10+h)^2}\right\vert\cdot( 20 \vert h\vert+\vert h\vert)$    
$\displaystyle =$ $\displaystyle \left\vert\frac{1}{10^2 (10+h)^2}\right\vert\cdot( 21 \vert h\vert)$    
% latex2html id marker 828
$\displaystyle \underset{\text{(¤¨)}}\leq$ % latex2html id marker 829
$\displaystyle \frac{1}{10^2\cdot 9^2} \cdot 21 \vert h\vert \leq \vert h\vert \underset{\text{(¤¤)}}{<}\epsilon$    

% latex2html id marker 836
$ \qedsymbol$

���� 14.3 (����¾�����󥳾��餬����)  

ARRAY(0x8e74070)ARRAY(0x8e74070)


next up previous
Next: About this document ...
2008-07-14