next up previous
Next: Bibliography

$ \mathbb{Z}_p$ , $ \mathbb{Q}_p$ , and the ring of Witt vectors

No.07: \fbox{ring of Witt vectors (1) Preparations}

From here on, we make use of several notions of category theory. Readers who are unfamiliar with the subject is advised to see a book such as [1] for basic definitions and first properties.

Let $ p$ be a prime number. For any commutative ring $ k$ of characteristic % latex2html id marker 741
$ p\neq 0$ , we want to construct a ring $ W(k)$ of characteristic 0 in such a way that:

  1. $ W(\mathbb{F}_p)=\mathbb{Z}_p$ .
  2. $ W(\bullet)$ is a functor. That means,
    1. For any ring homomorphism $ \varphi: k_1\to k_2$ between rings of characterisic $ p$ , there is given a unique ring homomorphism $ W(\varphi):W(k_1)\to W(k_2)$ .
    2. $ W(\bullet)$ should furthermore commutes with compositions of homomorphisms.

To construct $ W(k)$ , we construct a new addition and multiplication on a $ k$ -module $ \prod_{j=1}^\infty k $ . The ring $ W(k)$ will then be called the ring of Witt vectors. The treatment here essentially follows the treatment which appears in [2, VI,Ex.46-49], with a slight modification (which may or may not be good-it may even be wrong) by the author.

We first introduce a nice idea of Witt.

DEFINITION 07.1   Let $ A$ be a ring (of any characteristic). Let $ T$ be an indeterminate. We define the following copies of $ A^{\mathbb{Z}_{>0}}$ .

$\displaystyle \mathcal W_0(A)=
T A[[T]]
=
\left\{
\sum_{j=1}^\infty x^{(j)}T^j  ; x^{(n)} \in A(\forall n)
\right \}
$

$\displaystyle \mathcal W_1(A)=
1+ TA[[T]]
=
\left\{
1+\sum_{j=1}^\infty y_j T^j  ; x_n \in A(\forall n)
\right\}
$

LEMMA 07.2   $ \mathcal W_0$ and $ \mathcal W_1$ are functors from the category of rings to the category of sets. They are represented by ``polynomial rings in infinite indeterminates''

$\displaystyle A_{\mathcal W_0}
=\mathbb{Z}[X^{(1)},X^{(2)},X^{(3)},\dots]
$

and

$\displaystyle A_{\mathcal W_1}=
\mathbb{Z}[Y_1,Y_2,Y_3,\dots].
$

That means, there are functorial bijections

$\displaystyle \operatorname{Hom}_{\operatorname{ring}}(A_{\mathcal W_0},A)\cong \mathcal W_0(A)
$

and

$\displaystyle \operatorname{Hom}_{\operatorname{ring}}(A_{\mathcal W_1},A)\cong \mathcal W_1(A).
$

DEFINITION 07.3   We define the following ``universal elements''.

$\displaystyle v_0=
\sum_{j=1}^\infty X^{(j)} T^j \in \mathcal W_0(A_{\mathcal W_0}),
$

$\displaystyle v_1=
1+\sum_{j=1}^\infty Y_j T^j \in \mathcal W_1(A_{\mathcal W_1}).
$

LEMMA 07.4   There is an well-defined map

$\displaystyle {\mathcal L}_A=-T\frac{d}{dT}\log(\bullet): 1+T A[[T]] \to T A[[T]].
$

If $ A$ contains an copy of $ \mathbb{Q}$ , then the map is a bijection. The inverse is given by

$\displaystyle T g(T) \mapsto
\exp
\left (
-\int_0^T g(s)d s
\right).
$

PROOF.. To see that $ {\mathcal L}$ is well defined (that is, ``defined over $ \mathbb{Z}$ ''), we compute as follows.

$\displaystyle -T \frac{d}{d T}\log(1+T f_1)
=-T (f_1'+f_1)(1+T f_1)^{-1}
=-T (f_1'+f_1)\sum_{j=1}^\infty(-T f_1)^{j}
$

The rest should be obvious.

Note: the condition $ A\supset \mathbb{Q}$ is required to guarantee exictence of exponential

$\displaystyle \exp(\bullet)=\sum_{j=0}^\infty \frac{1}{j!} \bullet^j
$

and existence of the integration $ \int_0^T g(s)d s$ . % latex2html id marker 820
$ \qedsymbol$

DEFINITION 07.5   We equip $ \mathcal W_0(A)=T A[[T]]$ with the usual addition and the following (unusual) multiplication:

$\displaystyle \left(
\sum_{j=1}^\infty a^{(j)} T^j
\right)
*
\left(
\sum_{j=1}^\infty b^{(j)} T^j
\right)
=\sum_{j=1}^\infty (a^{(j)} b^{(j)}) T^j
$

It is easy to see that $ \mathcal W_0(A)$ forms a (unital associative) commutative ring with these binary operations.

DEFINITION 07.6   Let $ A$ be a ring which contains a copy of $ \mathbb{Q}$ . Then we define ring structure on $ \mathcal W_1(A)$ by putting

% latex2html id marker 857
$\displaystyle f+_{\mathcal L}g= {\mathcal L}_A^{-1}...
...d
f *_{\mathcal L}g= {\mathcal L}_A^{-1}({\mathcal L}_A(f)*{\mathcal L}_A(g)).
$

LEMMA 07.7   Let $ A$ be a ring which contains a copy of $ \mathbb{Q}$ . For any $ f,g\in \mathcal W_1 (A)$ , we have

$\displaystyle f+_{\mathcal L}g= f g.
$

In particular, addition $ +_{\mathcal L}$ is defined over $ \mathbb{Z}$ .

PROOF.. easy % latex2html id marker 876
$ \qedsymbol$

We may thus extend the definition $ +_{\mathcal L}$ on $ \mathcal W_1(A)$ to cases where the condition $ A\supset \mathbb{Q}$ is no longer satisfied.
next up previous
Next: Bibliography
2008-07-08