DEFINITION 3.8
Let
![$ X,Y$](img128.png)
be topological spaces.
Let
![$ f:X\to Y$](img133.png)
be a continuous map.
Let
![$ \mathcal F$](img140.png)
be a sheaf on
![$ X$](img38.png)
. Then we define its direct image
with respect to
![$ f$](img35.png)
by
with obvious restriction maps.
EXAMPLE 3.11
Let
![$ A,B$](img341.png)
be rings. Let
![$ \varphi:A \to B$](img343.png)
be a ring homomorphism.
We put
![$ f=\operatorname{Spec}(\varphi)$](img394.png)
be the continuous map
![$ Y=\operatorname{Spec}(B)\to \operatorname{Spec}(A)=X$](img395.png)
corresponding to
![$ \varphi$](img249.png)
.
We note that
![$ B$](img11.png)
carries an
![$ A$](img1.png)
-module structure via
![$ \varphi$](img249.png)
.
Accordingly, we have the corresponding sheaf
![$ \mathcal{O}_X \otimes_A B$](img396.png)
on
![$ X$](img38.png)
.
We may easily see that this sheaf coincides with
![$ f_*\mathcal{O}_Y$](img397.png)
.
The map
![$ \varphi:A \to B$](img343.png)
then may also be regarded as a homomorphism of
![$ A$](img1.png)
-modules.
We have thus an
![$ \mathcal{O}_X$](img354.png)
module homomorphism
of sheaves on
![$ X$](img38.png)
.
By the adjoint relation (Proposition
3.9),
we obtain a sheaf homomorphism
of sheaves of rings.