next up previous
: ����ʸ��ˤĤ���...

  $\displaystyle S(1\ 2). ( S(12)\ S(1234)\ 1\ S((12)(34))\ S(123))$    
$\displaystyle =$ $\displaystyle ( S(12)\ S(1234)\ 1\ S((12)(34))\ S(123)) \begin{pmatrix}0&0&1&1&4\\ 0&0&0&2&4\\ 6&0&0&0&0\\ 2&4&0&0&0\\ 3&3&0&0&0 \end{pmatrix}$    

$\displaystyle A=
\begin{pmatrix}
0&0&1&1&4\\
0&0&0&2&4\\
6&0&0&0&0\\
2&4&0&0&0\\
3&3&0&0&0
\end{pmatrix}$

�Ȥ����ȡ�$ A$ ������¿�༰�ϡ�

$\displaystyle T^5 - 40 T^3 + 144 T (=T (T - 6) (T - 2) (T + 2) (T + 6))
$

$\displaystyle A^2=
\left(\begin{array}{ccccc}
20 & 16 & 0 & 0 & 0\\
16 & 20 & ...
... 6 & 6 & 24\\
0 & 0 & 2 & 10 & 24\\
0 & 0 & 3 & 9 & 24\\
\end{array}\right)
$

$\displaystyle A^3=
\left(\begin{array}{ccccc}
0 & 0 & 20 & 52 & 144\\
0 & 0 & ...
... 0 & 0\\
104 & 112 & 0 & 0 & 0\\
108 & 108 & 0 & 0 & 0\\
\end{array}\right)
$

$\displaystyle A^4=
\left(\begin{array}{ccccc}
656 & 640 & 0 & 0 & 0\\
640 & 65...
...64\\
0 & 0 & 104 & 328 & 864\\
0 & 0 & 108 & 324 & 864\\
\end{array}\right)
$

  $\displaystyle S(12)^2=6+ 2 S((12)(34))+ 3 S(123)$    
  $\displaystyle S(12)^3=20 S(12)+ 16S(1234)$    
  $\displaystyle S(12)^4=120+ 104S((12)(34))+ 108S(123)$    
  $\displaystyle S(12)^5=656S(12)+ 640S(1234)$    





2003/7/9