next up previous
Next: Bibliography Up: Topics in Non commutative Previous: appendix

appendix 2

PROPOSITION 2.1   Let $ d$ be a positive integer. Let $ (X,\omega_X)$ , $ (Y,\omega_Y)$ be smooth symplectic algebraic varieties of dimension $ 2 n$ over a field $ k$ . Let $ \phi:X\to Y$ be a symplectic morphism. That means, it is a morphism which preserves the symplectic structure :

$\displaystyle \phi^*(\omega_Y)=\omega_X
$

Then the tangent map of $ \phi$ is of full rank at every point $ P$ on $ X$ .

We make an effective use of the theory of the Pfaffian $ \operatorname{Pfaff}(M)$ of a given matrix $ M$ . A good reference is in [2, XV,§9]. Especially important theorem we need to know is the following lemma.

LEMMA 2.2 ([2, XV,Theorem 9.1])   Let $ R$ be a commutative ring. Let $ (m_{i j})=M$ be an alternating matrix with $ g_{i j}\in R$ . Then

$\displaystyle \det(M)=(\operatorname{Pfaff}(M))^2.
$

Furthermore, if $ C$ is an $ n\times n$ matrix in $ R$ , then

$\displaystyle \operatorname{Pfaff}(C M {}^t C)=\det(C) \operatorname{Pfaff}(M).
$

PROOF.. (of Proposition 2.1) We may assume that $ k$ is algebraically closed and that $ P$ is a $ k$ -valued point. Let us represent the tangent map of $ f$ at $ P$ by $ T_P f$ . One may choose a local coordinate system $ x_1,\dots,x_{2n}$ on $ X$ around $ P$ such that the symplectic form $ \omega_X$ at $ P$ is represented by the matrix $ h$ when expressed in terms of $ d x_1,\dots,d x_{2n}$ . Likewise one may choose a local coordinate system $ y_1,\dots,y_{2 n}$ around $ f(P)$ such that the symplectic form $ \omega_Y$ at $ f(P)$ is represented by the matrix $ h$ when expressed in terms of $ d y_1,\dots,d y_{2n}$ . Then using the base $ \partial/\partial x_1, \partial/\partial x_2 ,\dots \partial/\partial x_{2n}$ $ \partial/\partial y_1, \partial/\partial y_2 ,\dots \partial/\partial y_{2n}$ , $ T_P f$ may be identified with a $ 2 n \times 2 n$ -matrix. Since by hypothesis $ T_P f$ reserves the symplectic form, we have

$\displaystyle ({}^t T_P f) h (T_P f)=h.
$

Let us compare the Pfaffian of the both hand sides.

$\displaystyle \det(T_P f)^2 \cdot \operatorname{Pfaff}(h)=\operatorname{Pfaff}(({}^t T_P f) h T_P f)=\operatorname{Pfaff}(h).
$

Since $ \operatorname{Pfaff}(h)=1$ , we conclude that the determinant of $ T_P f$ should be equal to 1 or (-1). $ \qedsymbol$

Note: It goes without saying that when $ X$ is connected, and if the coordinate systems $ x_1,\dots,x_{2n}$ and $ y_1,\dots,y_{2 n}$ are able to chosen globally (for example if $ X,Y$ are affine space $ \mathbb{A}^{2 n}=\operatorname{Spec}k[T_1,T_2,T_3,\dots,T_{2 n}]$ with

$\displaystyle \omega=d T_1 \wedge d T_{n+1} +
d T_2 \wedge d T_{n+2} +
d T_3 \wedge d T_{n+3} +\dots
+d T_n \wedge d T_{2 n}
$

as the symplectic form), then the Jacobian of $ f$ should either be $ 1$ on the whole of $ X$ or be $ -1$ on the whole of $ X$ .


next up previous
Next: Bibliography Up: Topics in Non commutative Previous: appendix
2008-03-15