next up previous
Next: Bibliography Up: Topics in Non commutative Previous: direct image of a

Affine schemes and rings: equivalence of categories

DEFINITION 4.1   Let $ A,B$ be rings. Let $ \varphi:A \to B$ be a ring homomorphism. We have already introduced $ \operatorname{Spec}(\varphi)$ as a continuous map $ Y=\operatorname{Spec}(B)\to \operatorname{Spec}(A)=X$ . Now that the spaces $ \operatorname{Spec}(A),\operatorname{Spec}(B)$ carry structures of locally ringed spaces, we (re)define $ \operatorname{Spec}(\varphi)$ as a morphism of locally ringed spaces by defining $ \operatorname{Spec}(\varphi)^\char93  $ as in Example 3.11.

LEMMA 4.2   $ \operatorname{Spec}(\varphi)$ is indeed a morphism of locally ringed space.

THEOREM 4.3   Let $ (f,f^\char93 ):\operatorname{Spec}(B)\to \operatorname{Spec}(A)$ be a morphism of locally ringed space. Then there exists an unique ring homomorphism $ \varphi:A \to B$ such that $ f$ coincides with $ \operatorname{Spec}(\varphi)$ .

PROOF.. Let us put $ Y=\operatorname{Spec}(B)$ and $ X=\operatorname{Spec}(A)$ . The data

$\displaystyle f^\char93 : f^{-1}\mathcal{O}_X \to \mathcal{O}_Y
$

is equivalent to a data

$\displaystyle f_\char93 : \mathcal{O}_X \to f_* \mathcal{O}_Y
$

which gives rise to a ring homomorphism

$\displaystyle f_\char93 (X): A=\mathcal{O}_X(X) \to (f_* \mathcal{O}_Y)(X)=B.
$

Let us take this homomorphism as $ \varphi$ .

$\displaystyle \begin{CD}
A_{f(y)}=\mathcal{O}_{X,f(y)} @>{f^\char93 _{y}} » \m...
...name{restr}_y} AA \\
\mathcal{O}_X(X) @>{\varphi} » \mathcal{O}_Y(Y)
\end{CD}$

By the hypothesis of $ f$ being a morphism of locally ringed spaces, $ f^\char93 _{y}$ is local homomorphism. That means,

$\displaystyle (f^{\char93 })^{-1} (y B_y)=f(y) A_{f(y)}.
$

$\displaystyle \varphi^{-1}(y)=f(y).
$

From the definition of $ \operatorname{Spec}(\varphi)$ , we have

$\displaystyle \operatorname{Spec}(\varphi)(y)=f(y).
$

We have thus proved that $ \operatorname{Spec}(\varphi)$ is equal to $ f$ as a map $ Y\to X$ .

$ \qedsymbol$


next up previous
Next: Bibliography Up: Topics in Non commutative Previous: direct image of a
2007-12-11