next up previous
Next: sheaves associated to modules Up: tensor products and inverse Previous: tensor products and localizations

tensor products of sheaves of modules

DEFINITION 3.6   Let $ (X,\mathcal A)$ be a sheaf of algebras (possibly non commutative). Let $ \mathcal F$ be a right $ \mathcal A$ -module. Let $ \mathcal G$ be a left $ \mathcal A$ -module. Then the tensor product $ \mathcal F\otimes _{\mathcal A}\mathcal G$ is the sheafification of the presheaf defined by

$\displaystyle U\mapsto \mathcal F(U)\otimes_ {\mathcal A(U)}\mathcal G(U).
$

DEFINITION 3.7   Let $ f:X\to Y$ be a morphism between locally ringed spaces. Let $ \mathcal F$ be a sheaf of $ \mathcal{O}_Y$ -modules on $ Y$ . Then the inverse image of $ \mathcal F$ as an $ \mathcal{O}$ -module with respect to $ f$ as a sheaf of $ \mathcal{O}$ -modules is defined as

$\displaystyle f^*(\mathcal F)=f^{-1}(\mathcal F)\otimes_{f^{-1}(\mathcal{O}_Y)} \mathcal{O}_X
$



2007-12-11