next up previous
Next: universality of tensor products Up: tensor products and inverse Previous: tensor products and inverse

tensor products of modules over an algebra

DEFINITION 3.1   Let $ A$ be a (not necessarily commutative) ring. Let $ M$ be a right $ A$ -module. Let $ N$ be a left $ A$ -module. Then we define the tensor product of $ M$ and $ N$ over $ A$ , denoted by

$\displaystyle M\otimes_A N
$

as a module generated by symbols

$\displaystyle \{ m \otimes n ; m\in M, n\in N\}
$

with the following relations.
  1. $\displaystyle (m_1 + m_2)\otimes n
=m_1 \otimes n + m_2 \otimes n \quad(m_1,m_2 \in M, n\in N)
$

  2. $\displaystyle m\otimes (n_1 + n_2)
=m \otimes n_1 + m \otimes n_2 \quad(m\in M, n_1,n_2 \in N)
$

  3. $\displaystyle m a \otimes n = m \otimes a n \qquad (m\in M, n\in N, a \in A)
$



2007-12-11