next up previous
Next: inverse images of sheaves Up: (Usual) affine schemes Previous: general localization of modules

local rings

DEFINITION 1.44   A commutative ring $ A$ is said to be a local ring if it has only one maximal ideal.

EXAMPLE 1.45   We give examples of local rings here.

LEMMA 1.46  
  1. Let $ A$ be a local ring. Then the maximal ideal of $ A$ coincides with $ A\setminus A^\times$ .
  2. A commutative ring $ A$ is a local ring if and only if the set $ A\setminus A^\times$ of non-units of $ A$ forms an ideal of $ A$ .

PROOF.. (1) Assume $ A$ is a local ring with the maximal ideal $ \mathfrak{m}$ . Then for any element $ f \in A\setminus A^\times$ , an ideal $ I=f A +\mathfrak{m}$ is an ideal of $ A$ . By Zorn's lemma, we know that $ I$ is contained in a maximal ideal of $ A$ . From the assumption, the maximal ideal should be $ \mathfrak{m}$ . Therefore, we have

$\displaystyle f A \subset \mathfrak{m}
$

which shows that

$\displaystyle A\setminus A^\times \subset \mathfrak{m}.
$

The converse inclusion being obvious (why?), we have

$\displaystyle A\setminus A^\times =\mathfrak{m}.
$

(2) The ``only if'' part is an easy corollary of (1). The ``if'' part is also easy.

$ \qedsymbol$

COROLLARY 1.47   Let $ A$ be a commutative ring. Let $ \mathfrak{p}$ its prime ideal. Then $ A_\mathfrak{p}$ is a local ring with the only maximal ideal $ \mathfrak{p}A_\mathfrak{p}$ .

PROPOSITION 1.48   Let $ A$ be a commutative ring. Let $ \mathfrak{p}\in \operatorname{Spec}(A)$ then the stalk $ \mathcal{O}_\mathfrak{p}$ of $ \mathcal{O}$ on $ \mathfrak{p}$ is isomorphic to $ A_\mathfrak{p}$ .

DEFINITION 1.49   Let $ A,B$ be local rings with maximal ideals $ \mathfrak{m}_A, \mathfrak{m}_B$ respectively. A local homomorphism $ \varphi:A \to B$ is a homomorphism which preserves maximal ideals. That means, a homomorphism $ \varphi$ is said to be local if

$\displaystyle \varphi^{-1}(\mathfrak{m}_B) =\mathfrak{m}_A
$

EXAMPLE 1.50 (of NOT being a local homomorphism)  

$\displaystyle \mathbb{Z}_{(p)}\to \mathbb{Q}
$

is not a local homomorphism.


next up previous
Next: inverse images of sheaves Up: (Usual) affine schemes Previous: general localization of modules
2007-12-11