next up previous
Next: ``Universal representation" of Weyl Up: Representations of Weyl algebras Previous: irreducible representations of the

Schur's lemma

LEMMA 7.7   Let $ k$ be an algebraically closed field. Let $ V$ be a finite dimensional representation of a $ k$ -algebra $ A$ . That means, $ V$ is a finite dimensional vector space over $ k$ , and we have a $ k$ -algebra homomorphism

$\displaystyle \alpha: A\to \operatorname{End}_k(V).
$

$ V$ may be regarded as an $ A$ -module. We assume further that $ V$ is irreducible representation of $ A$ . That means, $ V$ admits no non trivial $ A$ -module.

Then for each element $ z$ the center $ Z(A)$ of $ A$ , $ \alpha(z)$ is equal to a constant.

PROOF.. Let $ c \in k$ be an eigen value of $ \alpha(z)$ . Then $ \alpha(z-c)$ has a non trivial kernel. That means,

$\displaystyle V_c=\{ v\in V; \alpha(z-c) . v=0\}
$

is a non zero vector subspace of $ V$ . It is easy to verify that $ V_c$ is a $ A$ -submodule of $ V$ . From the irreducibility assumption, we have

$\displaystyle V=V_c,
$

which in turn means that $ \alpha(z)=c$ .

$ \qedsymbol$

COROLLARY 7.8   Let $ k$ be an algebraically closed field of characteristic $ p\neq 0$ . Then every finite dimensional irreducible representation $ \alpha:A_n(k)\to \operatorname{End}_k(V)$ of $ A_n(k)$ is equivalent to a representation $ \Phi_c$ for some $ c\in k^{2 n}$ .

PROOF.. It is easy to see that $ \gamma_j^p$ is in the center $ Z(A_n(k))$ of the Weyl algebra $ A_n(k)$ for $ j=1,2,3,\dots,2 n$ .

From the Lemma above, we have

$\displaystyle \alpha(\gamma_j^p)=a_j
$

for some $ a_j\in k$ . Let $ c_j$ be the $ p$ -th root of $ a_j$ in $ k$ (which exists uniquely). Then we see that

$\displaystyle \mathfrak{a}_c\subset \operatorname{Ker}(\alpha).
$

Thus $ \alpha$ is essentially a representation of $ A_n(k)/\mathfrak{a}_c\cong M_{p^n}(k)$ . $ \qedsymbol$

For completeness's sake, we record here the following easy lemma.

LEMMA 7.9   Let $ k$ be a field. Then any finite dimensional representation $ M_n(k)$ is written as a direct sum of copies of the standard representation $ k^n$ .

PROOF.. Let us denote by $ e_{i j}$ the $ i,j$ -elementary matrix. That means,

\begin{displaymath}
(e_{i j})_{k l}=
\begin{cases}
1 & \text{ when } (i,j)=(k,l)\\
0 & \text{otherwise.}
\end{cases}\end{displaymath}

Let $ V$ be the representation vector space. We first note that $ p_i=e_{ii}$ form a complete system of mutually orthogonal projections. That means,

$\displaystyle p_i^2=p_i, \qquad p_i p_j=0\quad ($if $\displaystyle i\neq j),\qquad \sum_{i=1}^n p_i=1
$

Let us thus put $ V_i=p_i V$ . Then we have

$\displaystyle V=\bigoplus_{i=1}^n V_n.
$

Furthermore,

$\displaystyle e_{ij}. :V_j \to V_i
$

is an isomorphism of vector space whose inverse is equal to $ e_{ji}$ .

Let us take a linear basis $ \{v_l\}_{l=1}^d$ of $ V_1$ over $ k$ . Then

$\displaystyle \{e_{i 1} v_l; i=1,2,3,\dots,n, l=1,2,3,\dots,d\}
$

is a basis of $ V$ . It is now easy to see that for each $ l$ , the vector space

$\displaystyle W_l=$linear span$\displaystyle (\{e_{i 1} v_l; i=1,2,3,\dots,n\})
$

is isomorphic to the standard representation of $ M_n(k)$ .

$ \qedsymbol$

We also notice the following

COROLLARY 7.10   Let $ k$ be a field of characteristic $ p\neq 0$ . Then $ M_{p^n}(k)$ is generated by $ \{\mu_i\}_{i=1}^{2 n}$ such that

$\displaystyle [\mu_i \mu_j]=h_{ij} \quad (\forall i,j ),\quad \mu_i^p=0 (\forall i)
$

PROOF.. We take the representation $ \Phi_0$ above and

$\displaystyle \mu_i=\Phi_0(\gamma_i) \qquad (i=1,2,3,\dots,2 n).
$

$ \qedsymbol$


next up previous
Next: ``Universal representation" of Weyl Up: Representations of Weyl algebras Previous: irreducible representations of the
2007-04-20